Displaying all 6 publications

Abstract:
Sort:
  1. Thientunyakit T, Sethanandha C, Muangpaisan W, Minoshima S
    Med J Malaysia, 2021 07;76(4):493-501.
    PMID: 34305110
    INTRODUCTION: The aim of this study is to use 3D-SSP and a population-comparable normal database to investigate the associations between amyloid deposition detected by 18Fflorbetapir PET and neurocognitive performance of participants with mild cognitive impairment (MCI) and Alzheimer's disease (AD).

    MATERIALS AND METHODS: 18F-florbetapir PET and 18F-FDG PET imaging was prospectively performed on 78 subjects (20 cognitively healthy controls [HC], 27 MCI patients, and 31 AD patients) within 6 weeks of their neurocognitive assessments. The PET datasets from 19 HCs were used to create an NBD. The 3D-SSP analysis and Z-score mapping of 18F-florbetapir accumulations in the brain were further staged based on their accumulation patterns. Global and regional standard uptake value ratios (SUVRs) of 18Fflorbetapir were calculated using the cerebellar cortex as the normalised region. The relationships between the 18Fflorbetapir PET results, the clinical diagnoses and Thai Mini- Mental State Examination (TMSE) scores were determined.

    RESULTS: There was high agreement between the visual assessment results and the semiquantitative analysis (κ = 0.793 and 0.845). The stages of amyloid deposition were consistent with neurocognitive status across participants. Significantly higher SUVRs were found in AD than MCI and HC. Visual assessment and stage were not significantly correlated with TMSE scores. A significant negative correlation between the SUVRs and TMSE scores was partially demonstrated in MCI and AD, but not HC.

    CONCLUSIONS: 3D-SSP analysis of 18F-florbetapir PET provides special patterns and intensity of beta amyloid accumulation semi-quantitatively that are associated with the diagnosis and neurocognitive performances in MCI and AD patients.

    Matched MeSH terms: Ethylene Glycols
  2. Shariffudin SS, Mamat MH, Rusop M
    J Nanosci Nanotechnol, 2012 Oct;12(10):8165-8.
    PMID: 23421195
    Transparent nanostructured ZnO thin films were successfully deposited using sol-gel spin coating method on a quartz substrate. The 0.4 M ZnO solution gel was prepared using zinc acetate dihydrate (Zn(CH3COO)22H2O) as the precursor, 2-methoxyethanol as the solvent and monoethanolamine (MEA) as the stabilizer. The electrical and optical properties dependencies on the annealing temperature of the nanostructured ZnO thin films were investigated. It was found that as the annealing temperature increased, the particle size, conductivity and the peak of the UV emission also increased.
    Matched MeSH terms: Ethylene Glycols
  3. Obayashi Y, Wei Bong C, Suzuki S
    Front Microbiol, 2017;8:1952.
    PMID: 29067013 DOI: 10.3389/fmicb.2017.01952
    Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities) in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO) and 2-methoxyethanol (MTXE). The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution) DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube), protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In conclusion, the materials and method for measurements should be carefully selected in order to accurately determine the activities of microbial extracellular hydrolytic enzymes in aquatic ecosystems; especially, low protein binding materials should be chosen to use at overall processes of the measurement.
    Matched MeSH terms: Ethylene Glycols
  4. Zainol NA, Ming TS, Darwis Y
    Indian J Pharm Sci, 2015 12 15;77(4):422-33.
    PMID: 26664058 DOI: 10.4103/0250-474x.164785
    Cinnamon leaf oil contains a high percentage of eugenol and has antimicrobial, antioxidant and antiinflammatory properties. However, the undiluted oil can cause irritation to the skin. Therefore, the aims of this study were to develop and evaluate cinnamon leaf oil nanocream using palm oil. Nanocream base was prepared using different ratios of oil, surfactants and water. The surfactant used were mixture of Tween 80:Carbitol or Tween 80:Span 65 at different hydrophile-lipophile balance values. The pseudoternary phase diagrams were constructed to identify the nanocream base areas and the results showed that the nanocream bases using Span 65 as co-surfactant produced bigger cream area. Fifteen formulations using mixtures of Tween 80:Span 65 were further evaluated for accelerated stability test, droplet size, zeta potential, rheological properties and apparent viscosity. The nanocream base which had an average droplet size of 219 nm and had plastic flow with thixotropic behavior was selected for incorporation of 2% cinnamon leaf oil. The nanocream containing cinnamon leaf oil had the average size of 286 nm and good rheological characteristics. The in vitro release study demonstrated that eugenol as the main constituent of cinnamon leaf oil was released for about 81% in 10 h. The short-term stability study conducted for 6 months showed that the cinnamon leaf oil nanocream was stable at a temperature of 25° and thus, cinnamon leaf oil nanocream is a promising natural based preparation to be used for topical application.
    Matched MeSH terms: Ethylene Glycols
  5. Khairul Anuar NFS, Huyop F, Ur-Rehman G, Abdullah F, Normi YM, Sabullah MK, et al.
    Int J Mol Sci, 2022 Oct 20;23(20).
    PMID: 36293501 DOI: 10.3390/ijms232012644
    Plastic or microplastic pollution is a global threat affecting ecosystems, with the current generation reaching as much as 400 metric tons per/year. Soil ecosystems comprising agricultural lands act as microplastics sinks, though the impact could be unexpectedly more far-reaching. This is troubling as most plastic forms, such as polyethylene terephthalate (PET), formed from polymerized terephthalic acid (TPA) and ethylene glycol (EG) monomers, are non-biodegradable environmental pollutants. The current approach to use mechanical, thermal, and chemical-based treatments to reduce PET waste remains cost-prohibitive and could potentially produce toxic secondary pollutants. Thus, better remediation methods must be developed to deal with plastic pollutants in marine and terrestrial environments. Enzymatic treatments could be a plausible avenue to overcome plastic pollutants, given the near-ambient conditions under which enzymes function without the need for chemicals. The discovery of several PET hydrolases, along with further modification of the enzymes, has considerably aided efforts to improve their ability to degrade the ester bond of PET. Hence, this review emphasizes PET-degrading microbial hydrolases and their contribution to alleviating environmental microplastics. Information on the molecular and degradation mechanisms of PET is also highlighted in this review, which might be useful in the future rational engineering of PET-hydrolyzing enzymes.
    Matched MeSH terms: Ethylene Glycols
  6. Lim WM, Rajinikanth PS, Mallikarjun C, Kang YB
    Int J Nanomedicine, 2014;9:2117-26.
    PMID: 24833900 DOI: 10.2147/IJN.S57565
    The objectives of this study were to develop and characterize itraconazole (ITZ)-loaded nanostructured lipid carriers (NLCs) and to study their potential for drug delivery into the brain. Precirol(®) ATO 5 and Transcutol(®) HP were selected as the lipid phase, and Tween(®) 80 and Solutol(®) HS15 as surfactants. The ITZ-NLCs were prepared by a hot and high-pressure homogenization method. The entrapment efficiency for the best formulation batch was analyzed using high-performance liquid chromatography and was found to be 70.5%±0.6%. The average size, zeta potential, and polydispersity index for the ITZ-NLCs used for animal studies were found to be 313.7±15.3 nm, -18.7±0.30 mV, and 0.562±0.070, respectively. Transmission electron microscopy confirmed that ITZ-NLCs were spherical in shape, with a size of less than 200 nm. Differential scanning calorimetry and X-ray diffractometry analysis showed that ITZ was encapsulated in the lipid matrix and present in the amorphous form. The in vitro release study showed that ITZ-NLCs achieved a sustained release, with cumulative release of 80.6%±5.3% up to 24 hours. An in vivo study showed that ITZ-NLCs could increase the ITZ concentration in the brain by almost twofold. These results suggest that ITZ-NLCs can be exploited as nanocarriers to achieve sustained release and brain-targeted delivery.
    Matched MeSH terms: Ethylene Glycols/chemistry*; Polyethylene Glycols/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links