Displaying all 2 publications

Abstract:
Sort:
  1. Sundaram A, Grant CM
    Fungal Genet. Biol., 2014 Jun;67:15-23.
    PMID: 24699161 DOI: 10.1016/j.fgb.2014.03.005
    Eukaryotic cells typically respond to stress conditions by inhibiting global protein synthesis. The initiation phase is the main target of regulation and represents a key control point for eukaryotic gene expression. In Saccharomyces cerevisiae and mammalian cells this is achieved by phosphorylation of eukaryotic initiation factor 2 (eIF2α). We have examined how the fungal pathogen Candida albicans responds to oxidative stress conditions and show that oxidants including hydrogen peroxide, the heavy metal cadmium and the thiol oxidant diamide inhibit translation initiation. The inhibition in response to hydrogen peroxide and cadmium largely depends on phosphorylation of eIF2α since minimal inhibition is observed in a gcn2 mutant. In contrast, translation initiation is inhibited in a Gcn2-independent manner in response to diamide. Our data indicate that all three oxidants inhibit growth of C. albicans in a dose-dependent manner, however, loss of GCN2 does not improve growth in the presence of hydrogen peroxide or cadmium. Examination of translational activity indicates that these oxidants inhibit translation at a post-initiation phase which may account for the growth inhibition in a gcn2 mutant. As well as inhibiting global translation initiation, phosphorylation of eIF2α also enhances expression of the GCN4 mRNA in yeast via a well-known translational control mechanism. We show that C. albicans GCN4 is similarly induced in response to oxidative stress conditions and Gcn4 is specifically required for hydrogen peroxide tolerance. Thus, the response of C. albicans to oxidative stress is mediated by oxidant-specific regulation of translation initiation and we discuss our findings in comparison to other eukaryotes including the yeast S. cerevisiae.
    Matched MeSH terms: Diamide/pharmacology
  2. Posos-Parra O, Mota-Sanchez D, Pittendrigh BR, Wise JC, DiFonzo CD, Patterson E
    PLoS One, 2024;19(2):e0295928.
    PMID: 38394153 DOI: 10.1371/journal.pone.0295928
    The fall armyworm (Spodoptera frugiperda) is one of the most destructive pests of corn. New infestations have been reported in the East Hemisphere, reaching India, China, Malaysia, and Australia, causing severe destruction to corn and other crops. In Puerto Rico, practical resistance to different mode of action compounds has been reported in cornfields. In this study, we characterized the inheritance of resistance to chlorantraniliprole and flubendiamide and identified the possible cross-resistance to cyantraniliprole and cyclaniliprole. The Puerto Rican (PR) strain showed high levels of resistance to flubendiamide (RR50 = 2,762-fold) and chlorantraniliprole (RR50 = 96-fold). The inheritance of resistance showed an autosomal inheritance for chlorantraniliprole and an X-linked inheritance for flubendiamide. The trend of the dominance of resistance demonstrated an incompletely recessive trait for H1 (♂ SUS × ♀ PR) × and an incompletely dominant trait for H2 (♀ SUS × ♂ PR) × for flubendiamide and chlorantraniliprole. The PR strain showed no significant presence of detoxification enzymes (using synergists: PBO, DEF, DEM, and VER) to chlorantraniliprole; however, for flubendiamide the SR = 2.7 (DEM), SR = 3.2 (DEF) and SR = 7.6 (VER) indicated the role of esterases, glutathione S- transferases and ABC transporters in the metabolism of flubendiamide. The PR strain showed high and low cross-resistance to cyantraniliprole (74-fold) and cyclaniliprole (11-fold), respectively. Incomplete recessiveness might lead to the survival of heterozygous individuals when the decay of diamide residue occurs in plant tissues. These results highlight the importance of adopting diverse pest management strategies, including insecticide rotating to manage FAW populations in Puerto Rico and other continents.
    Matched MeSH terms: Diamide/pharmacology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links