Displaying all 19 publications

Abstract:
Sort:
  1. Harano K, Harano T
    Rinsho Byori, 2010 Apr;58(4):325-31.
    PMID: 20496759
    Hb and gene analyses of a Malaysian mother and her two daughters with microcytic anemia living in Japan were performed. Hb analyses of their hemolysates by IEF and DEAE-HPLC revealed high values of Hb A2 and HbF, but abnormal Hbs such as Hb E and Hb Constant Spring, which cause beta- and alpha-thalassemia traits, were not detected. From these data, they were suspected to be beta-thalassemia carriers. The thalassemic mutations commonly found in the Asian area by ARMS and nucleotide sequencing methods were not detected, and the frameworks of the beta-globin gene and the haplotypes of the beta-like globin gene cluster between the mother and daughters were not identical. These results led us to conclude that there was a beta(0)-thalassemia mutation with a large deletion from the beta-globin gene beyond the 3'beta/BamHI polymorphic site 3' downstream to the beta-globin gene. However, the range of the deletion from the beta-like globin gene cluster has not yet been completed in detail. Recently, there have been many foreigners mainly from Asian countries in Japan. We may encounter people with the rare type thalassemic mutation described in the text besides the mutations frequently found in Asian countries.
    Matched MeSH terms: DNA Mutational Analysis/methods
  2. Looi ML, Sivalingam M, Husin ND, Radin FZ, Isa RM, Zakaria SZ, et al.
    Clin Chim Acta, 2011 May 12;412(11-12):999-1002.
    PMID: 21315703 DOI: 10.1016/j.cca.2011.02.006
    BACKGROUND: Beta thalassemia represents a great heterogeneity as over 300 mutations have been identified and each population at-risk has its own spectrum of mutations. Molecular characterization with high accuracy, sensitivity and economics is required for population screening and genetic counseling.
    METHODS: We used the MALDI-TOF mass spectrometry (MS) platform to develop novel multiplex assays for comprehensive detection of 27 mutations in beta-thalassemia patients. Six multiplex assays were designed to detect 13 common known ß-mutations, namely CD41/42, CD71/72, IVS1-5, IVS1-1, CD26, IVS2-654, CAP+1, CD19, -28, -29, IVS1-2, InCD (T-G) and CD17; and 14 rare ß-mutations, i.e. InCD (A-C), CD8/9, CD43, -86, CD15, Poly A, Poly T/C, IVS2-1, CD1, CD35/36, CD27/28, CD16, CD37, and 619bpDEL in 165 samples. We compared the efficiencies of genotyping by MS and Amplification Refractory Mutation System (ARMS). Discrepant results were confirmed by sequencing analysis.
    RESULTS: A total of 88.7% (260/293 allele) of MS and ARMS results was in agreement. More than fifty percent of the discrepant result was due to the false interpretation of ARMS results. Failed CD19 assay by MS method might be due to the assay design. The MS method detected 5 rare ß-mutations (CD15, CD35/36, CD8/9, Poly A and Poly T/C) presented in 13 alleles, which were not included in the ARMS screening panel.
    CONCLUSION: We revealed that the MS method is a sensitive, high-throughput, highly automated, flexible, and cost-effective alternative to conventional ß-thalassemia genotyping methods.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  3. Lama R, Yusof W, Shrestha TR, Hanafi S, Bhattarai M, Hassan R, et al.
    Hematol Oncol Stem Cell Ther, 2022 Mar 01;15(1):279-284.
    PMID: 33592169 DOI: 10.1016/j.hemonc.2021.01.004
    BACKGROUND: Beta-thalassemia is a genetic disorder that is inherited in an autosomal recessive pattern. This genetic disease leads to a defective beta-globin hemoglobin chain causing partial or complete beta-globin chain synthesis loss. Beta-thalassemia major patients need a continuous blood transfusion and iron chelation to maintain the normal homeostasis of red blood cells (RBCs) and other systems in the body. Patients also require treatment procedures that are costly and tedious, resulting in a serious health burden for developing nations such as Nepal.

    METHODS: A total of 61 individuals clinically diagnosed to have thalassemia were genotyped with multiplex amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Twenty-one major mutations were investigated using allele-specific primers grouped into six different panels.

    RESULTS: The most common mutations found (23%) were IVS 1-5 (G-C) and Cd 26 (G-A) (HbE), followed by 619 deletion, Cd 8/9 (+G), Cd 16 (-C), Cd 41/42 (-TTCT), IVS 1-1 (G-T), Cd 19 (A-G), and Cd 17 (A-T) at 20%, 12%, 8%, 6%, 4%, 3%, and 1%, respectively.

    CONCLUSION: The results of this study revealed that Nepal's mutational profile is comparable to that of its neighboring countries, such as India and Myanmar. This study also showed that thalassemia could be detected across 17 Nepal's ethnic groups, especially those whose ancestors originated from India and Central Asia.

    Matched MeSH terms: DNA Mutational Analysis/methods
  4. Ngoi ST, Thong KL
    Biomed Res Int, 2014;2014:718084.
    PMID: 25371903 DOI: 10.1155/2014/718084
    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  5. Azize NA, Ngah WZ, Othman Z, Md Desa N, Chin CB, Md Yunus Z, et al.
    J Hum Genet, 2014 Nov;59(11):593-7.
    PMID: 25231368 DOI: 10.1038/jhg.2014.69
    Glycine encephalopathy (GCE) or nonketotic hyperglycinemia is an inborn error of glycine metabolism, inherited in an autosomal recessive manner due to a defect in any one of the four enzymes aminomethyltransferase (AMT), glycine decarboxylase (GLDC), glycine cleavage system protein-H (GCSH) and dehydrolipoamide dehydrogenase in the glycine cleavage system. This defect leads to glycine accumulation in body tissues, including the brain, and causes various neurological symptoms such as encephalopathy, hypotonia, apnea, intractable seizures and possible death. We screened 14 patients from 13 families with clinical and biochemical features suggestive of GCE for mutation in AMT, GLDC and GCSH genes by direct sequencing and genomic rearrangement of GLDC gene using a multiplex ligation-dependant probe amplification. We identified mutations in all 14 patients. Seven patients (50%) have biallelic mutations in GLDC gene, six patients (43%) have biallelic mutations in AMT gene and one patient (7%) has mutation identified in only one allele in GLDC gene. Majority of the mutations in GLDC and AMT were missense mutations and family specific. Interestingly, two mutations p.Arg265His in AMT gene and p.His651Arg in GLDC gene occurred in the Penan sub-population. No mutation was found in GCSH gene. We concluded that mutations in both GLDC and AMT genes are the main cause of GCE in Malaysian population.
    Matched MeSH terms: DNA Mutational Analysis/methods
  6. Aishah ZS, Khairi MD, Normastura AR, Zafarina Z, Zilfalil BA
    J Laryngol Otol, 2008 Dec;122(12):1284-8.
    PMID: 18353197 DOI: 10.1017/S0022215108002041
    To determine the frequency and type of gap junction protein beta-2 gene mutations in Malay patients with autosomal recessive, non-syndromic hearing loss.
    Matched MeSH terms: DNA Mutational Analysis/methods
  7. Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A, et al.
    Neurol Res, 2007 Apr;29(3):239-42.
    PMID: 17509221
    Brain tumorigenesis is a complex process involving multiple genetic alterations. Cyclin D1 and BAX genes are two of the most important regulators in controlling the normal proliferation and apoptosis of cells, respectively. In this study, we analysed the possibilities of involvement of cyclin D1 and BAX genes in the gliomagenesis.
    Matched MeSH terms: DNA Mutational Analysis/methods
  8. Lee AS, Ho GH, Oh PC, Balram C, Ooi LL, Lim DT, et al.
    Hum Mutat, 2003 Aug;22(2):178.
    PMID: 12872263
    The mutation spectrum of the BRCA1 gene among ethnic groups from Asia has not been well studied. We investigated the frequency of mutations in the BRCA1 gene among Malay breast cancer patients from Singapore, independent of family history. By using the protein truncation test (PTT) and direct sequencing, BRCA1 mutations were detected in 6 of 49 (12.2%) unrelated patients. Four novel missense mutations in exon 11, T557A (1788A>G), T582A (1863A>G), N656S (2086A>G) and P684S (2169C>T) were identified in one patient. Two patients had missense mutations in exon 23, V1809A (5545T>C), which has been previously detected in individuals from Central and Eastern Europe. Three unrelated patients had the deleterious 2846insA frameshift mutation in exon 11. Methylation specific PCR (MSP) of the promoter region of the BRCA1 gene detected hypermethylation of tumor DNA in an additional 2 patients. Haplotype analysis using the microsatellite markers D17S855, D17S1323 and D17S1325 revealed a common haplotype for the three unrelated patients and their three relatives with the 2846insA mutation. These findings strongly suggest that the 2846insA mutation, the most common deleterious mutation in this study, may possibly be a founder mutation in breast cancer patients of Malay ethnic background.
    Matched MeSH terms: DNA Mutational Analysis/methods
  9. Tan KL, Tan JA, Wong YC, Wee YC, Thong MK, Yap SF
    Genet. Test., 2001;5(1):17-22.
    PMID: 11336396 DOI: 10.1089/109065701750168626
    Beta-thalassemia major patients have chronic anemia and are dependent on blood transfusions to sustain life. Molecular characterization and prenatal diagnosis of beta3-thalassemia is essential in Malaysia because about 4.5% of the population are heterozygous carriers for beta-thalassemia. The high percentage of compound heterozygosity (47.62%) found in beta-thalassemia major patients in the Thalassaemia Registry, University of Malaya Medical Centre (UMMC), Malaysia, also supports a need for rapid, economical, and sensitive protocols for the detection of beta-thalassemia mutations. Molecular characterization of beta-thalassemia mutations in Malaysia is currently carried out using ARMS, which detects a single beta-thalassemia mutation per PCR reaction. We developed and evaluated Combine amplification refractory mutation system (C-ARMS) techniques for efficient molecular detection of two to three beta-thalassemia mutations in a single PCR reaction. Three C-ARMS protocols were evaluated and established for molecular characterization of common beta-thalassemia mutations in the Malay and Chinese ethnic groups in Malaysia. Two C-ARMS protocols (cd 41-42/IVSII #654 and -29/cd 71-72) detected the beta-thalassemia mutations in 74.98% of the Chinese patients studied. The CARMS for cd 41-42/IVSII #654 detected beta-thalassemia mutations in 72% of the Chinese families. C-ARMS for cd 41-42/IVSI #5/cd 17 allowed detection of beta-thalassemia mutations in 36.53% of beta-thalassemia in the Malay patients. C-ARMS for cd 41-42/IVSI #5/cd 17 detected beta-thalassemia in 45.54% of the Chinese patients. We conclude that C-ARMS with the ability to detect two to three mutations in a single reaction provides more rapid and cost-effective protocols for beta-thalassemia prenatal diagnosis and molecular analysis programs in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  10. Rethanavelu K, Fung JLF, Chau JFT, Pei SLC, Chung CCY, Mak CCY, et al.
    Am J Med Genet A, 2020 02;182(2):279-288.
    PMID: 31755649 DOI: 10.1002/ajmg.a.61412
    Alström syndrome (AS) is a monogenic syndromic ciliopathy caused by mutations in the ALMS1 (Alström Syndrome 1) gene. A total of 21 subjects with AS from 20 unrelated Chinese families were recruited. Our cohort consists of 9 females and 12 males, between 5 months and 20 years old. The first symptom(s) appeared between 3 and 24 months. They were recorded to be either visual impairments (83%) or dilated cardiomyopathy (17%). Median time from symptom onset to seeking medical attention was 6 months (3-36 months) and the median time needed to reach the final molecular diagnosis is 54 months (6-240 months). System involvement at the time of the survey was as follows: visual symptoms (100%), hearing Impairment (67%), endocrine symptoms (43%), neurological symptoms (19%), hepatic symptoms (14%), and renal Involvement (14%). These findings are comparable to data reported in the literature. However, the proportion of subjects with cognitive impairment (33%) and behavioral problems (19%) were higher. Thirty-three unique mutations were identified in the ALMS1 gene, of which 18 are novel mutations classified as pathogenic/likely pathogenic according to the American College of Medical Genetics (ACMG) guideline. Four recurrent mutations were identified in the cohort, in particular; c.2084C>A, p. (Ser695Ter), is suggestive to be a founder mutation in people of Chinese ancestry. The participation of AS subjects of differing ethnicities is essential to improve the algorithm in facial recognition/phenotyping, as well as to understand the mutation spectrum beyond than just those of European ancestry.
    Matched MeSH terms: DNA Mutational Analysis/methods
  11. Ismail NF, Rani AQ, Nik Abdul Malik NM, Boon Hock C, Mohd Azlan SN, Abdul Razak S, et al.
    J Mol Diagn, 2017 03;19(2):265-276.
    PMID: 28087349 DOI: 10.1016/j.jmoldx.2016.10.009
    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder characterized by tumor growth in multiple organs and caused by mutations in either TSC1 or TSC2 genes. Because of their relatively large genomic sizes, absence of hotspots, and common type of mutations, mutation detection in TSC1 and TSC2 genes has been challenging. We devised a combination of multiple ligation-dependent probe amplification (MLPA) and amplicon sequencing (AS) to simplify the detection strategy, yet we come up with reasonably high detection rate. Thirty-four Malaysian patients diagnosed with TSC were referred to Human Genome Center, Universiti Sains Malaysia. We used a combination of MLPA to detect large copy number changes and AS to detect smaller mutations. TSC1 pathogenic or likely pathogenic mutations were found in 6 patients (18%) and TSC2 in 21 patients (62%), whereas 6 patients (18%) show no mutations and 1 patient (2%) showed only TSC2 missense variant with uncertain significance. Six of the mutations are novel. Our detection strategy costs 81% less and require 1 working week less than the conventional strategy. Confirmatory sequencing using Sanger method on a few representative mutations showed agreement with results of the AS. Combination of MLPA and Illumina MiSeq AS provides a simplified strategy and reasonably high detection rate for TSC1/TSC2 mutation, which suggested application of the strategies into clinical molecular diagnostics.
    Matched MeSH terms: DNA Mutational Analysis/methods
  12. Tan JA, Kok JL, Tan KL, Wee YC, George E
    Genes Genet Syst, 2009 Feb;84(1):67-71.
    PMID: 19420802
    Co-inheritance of alpha-thalassemia with homozygosity or compound heterozygosity for beta-thalassemia may ameliorate beta-thalassemia major. A wide range of clinical phenotypes is produced depending on the number of alpha-thalassemia alleles (-alpha/alphaalpha --/alphaalpha, --/-alpha). The co-inheritance of beta-thalassemia with alpha-thalassemia with a single gene deletion (-alpha/alphaalpha) is usually associated with thalassemia major. In contrast, the co-inheritance of beta-thalassemia with two alpha-genes deleted in cis or trans (--/alphaalpha or -alpha/-alpha) generally produces beta-thalassemia intermedia. In Southeast Asia, the most common defect responsible for alpha-thalassemia is the Southeast Asian (SEA) deletion of 20.5 kilobases. The presence of the SEA deletion with Hb Constant Spring (HbCS) produces HbH-CS disease. Co-inheritance of HbH-CS with compound heterozygosity for beta-thalassemia is very rare. This study presents a Malay patient with HbH-CS disorder and beta degrees/beta+-thalassemia. The SEA deletion was confirmed in the patient using a duplex-PCR. A Combine-Amplification Refractory Mutation System (C-ARMS) technique to simultaneously detect HbCS and Hb Quong Sze confirmed HbCS in the patient. Compound heterozygosity for CD41/42 and Poly A was confirmed using the ARMS. This is a unique case as the SEA alpha-gene deletion in cis (--SEA/alphaalpha) is generally not present in the Malays, who more commonly possess the two alpha-gene deletion in trans (-alpha/-alpha). In addition, the beta-globin gene mutation at CD41/42 is a common mutation in the Chinese and not in the Malays. The presence of both the SEA deletion and CD41/42 in the mother of the patient suggests the possible introduction of these two defects into the family by marriage with a Chinese.
    Matched MeSH terms: DNA Mutational Analysis/methods
  13. Tan JT, Ng DP, Nurbaya S, Ye S, Lim XL, Leong H, et al.
    J Clin Endocrinol Metab, 2010 Jan;95(1):390-7.
    PMID: 19892838 DOI: 10.1210/jc.2009-0688
    CONTEXT:
    Novel type 2 diabetes mellitus (T2DM) susceptibility loci, identified through genome-wide association studies (GWAS), have been replicated in many European and Japanese populations. However, the association in other East Asian populations is less well characterized.

    OBJECTIVE:
    To examine the effects of SNPs in CDKAL1, CDKN2A/B, IGF2BP2, HHEX, SLC30A8, PKN2, LOC387761, and KCNQ1 on risk of T2DM in Chinese, Malays, and Asian-Indians in Singapore.

    DESIGN:
    We genotyped these candidate single-nucleotide polymorphisms (SNPs) in subjects from three major ethnic groups in Asia, namely, the Chinese (2196 controls and 1541 cases), Malays (2257 controls and 1076 cases), and Asian-Indians (364 controls and 246 cases). We also performed a metaanalysis of our results with published studies in East Asians.

    RESULTS:
    In Chinese, SNPs in CDKAL1 [odds ratio (OR) = 1.19; P = 2 x 10(-4)], HHEX (OR = 1.15; P = 0.013), and KCNQ1 (OR = 1.21; P = 3 x 10(-4)) were significantly associated with T2DM. Among Malays, SNPs in CDKN2A/B (OR = 1.22; P = 3.7 x 10(-4)), HHEX (OR = 1.12; P = 0.044), SLC30A8 (OR = 1.12; P = 0.037), and KCNQ1 (OR = 1.19-1.25; P = 0.003-2.5 x 10(-4)) showed significant association with T2DM. The combined analysis of the three ethnic groups revealed significant associations between SNPs in CDKAL1 (OR = 1.13; P = 3 x 10(-4)), CDKN2A/B (OR = 1.16; P = 9 x 10(-5)), HHEX (OR = 1.14; P = 6 x 10(-4)), and KCNQ1 (OR = 1.16-1.20; P = 3 x 10(-4) to 3 x 10(-6)) with T2DM. SLC30A8 (OR = 1.06; P = 0.039) showed association only after adjustment for gender and body mass index. Metaanalysis with data from other East Asian populations showed similar effect sizes to those observed in populations of European ancestry.

    CONCLUSIONS:
    SNPs at T2DM susceptibility loci identified through GWAS in populations of European ancestry show similar effects in Asian populations. Failure to detect these effects across different populations may be due to issues of power owing to limited sample size, lower minor allele frequency, or differences in genetic effect sizes.
    Matched MeSH terms: DNA Mutational Analysis/methods
  14. Watihayati MS, Fatemeh H, Marini M, Atif AB, Zahiruddin WM, Sasongko TH, et al.
    Brain Dev, 2009 Jan;31(1):42-5.
    PMID: 18842367 DOI: 10.1016/j.braindev.2008.08.012
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
    Matched MeSH terms: DNA Mutational Analysis/methods
  15. Abd Rahim MR, Kho SL, Kuppusamy UR, Tan JA
    Clin. Lab., 2015;61(9):1325-30.
    PMID: 26554253
    BACKGROUND: Beta-thalassemia is the most common genetic disorder in Malaysia. Confirmation of the β-globin gene mutations involved in thalassemia is usually carried out by molecular analysis of DNA extracted from leukocytes in whole blood. Molecular analysis is generally carried out when affected children are around 1 - 2 years as clinical symptoms are expressed during this period. Blood taking at this age can be distressing for the child. High yield and pure DNA extracted from non-invasive sampling methods can serve as alternative samples in molecular studies for genetic diseases especially in pediatric cases.

    METHODS: In this study, mouthwash, saliva, and buccal cytobrush samples were collected from β-thalassemia major patients who had previously been characterized using DNA extracted from peripheral blood. DNA was extracted from mouthwash, saliva, and buccal cytobrush samples using the conventional inexpensive phenol-chloroform method and was measured by spectrophotometry for yield and purity. Molecular characterization of β-globin gene mutations was carried out using the amplification refractory mutation system (ARMS).

    RESULTS: DNA extracted from mouthwash, saliva, and buccal cytobrush samples produced high concentration and pure DNA. The purified DNA was successfully amplified using ARMS. Results of the β-globin gene mutations using DNA from the three non-invasive samples were in 100% concordance with results from DNA extracted from peripheral blood.

    CONCLUSIONS: The conventional in-house developed methods for non-invasive sample collection and DNA extraction from these samples are effective and negate the use of more expensive commercial kits. In conclusion, DNA extracted from mouthwash, saliva, and buccal cytobrush samples provided sufficiently high amounts of pure DNA suitable for molecular analysis of β-thalassemia.

    Matched MeSH terms: DNA Mutational Analysis/methods*
  16. Yatabe Y, Kerr KM, Utomo A, Rajadurai P, Tran VK, Du X, et al.
    J Thorac Oncol, 2015 Mar;10(3):438-45.
    PMID: 25376513 DOI: 10.1097/JTO.0000000000000422
    The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutation-positive non-small-cell lung cancer (NSCLC) patients necessitates accurate, timely testing. Although EGFR mutation testing has been adopted by many laboratories in Asia, data are lacking on the proportion of NSCLC patients tested in each country, and the most commonly used testing methods.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  17. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  18. Wu YL, Lee V, Liam CK, Lu S, Park K, Srimuninnimit V, et al.
    Lung Cancer, 2018 12;126:1-8.
    PMID: 30527172 DOI: 10.1016/j.lungcan.2018.10.004
    OBJECTIVE: Patients with advanced non-small-cell lung cancer (NSCLC) with an adenocarcinoma component are recommended to undergo epidermal growth factor receptor (EGFR) mutation testing when being considered for EGFR targeted therapy. We conducted an exploratory analysis to inform the clinical utility of EGFR mutation testing in blood cell-free DNA using the cobas®EGFR Mutation Test v2.

    MATERIALS AND METHODS: Two EGFR mutation tests, a tissue-based assay (cobas® v1) and a tissue- and blood-based assay (cobas® v2) were used to analyze matched biopsy and blood samples (897 paired samples) from three Asian studies of first-line erlotinib with similar intent-to-treat populations. ENSURE was a phase III comparison of erlotinib and gemcitabine/platinum, FASTACT-2 was a phase III study of gemcitabine/platinum plus erlotinib or placebo, and ASPIRATION was a single-arm phase II study of erlotinib. Agreement statistics were evaluated, based on sensitivity and specificity between the two assays in subgroups of patients with increasing tumor burden.

    RESULTS: Patients with discordant EGFR (tissue+/plasma-) mutation status achieved longer progression-free and overall survival than those with concordant (tissue+/plasma+) mutation status. Tumor burden was significantly greater in patients with concordant versus discordant mutations. Pooled analyses of data from the three studies showed a sensitivity of 72.1% (95% confidence interval [CI] 67.8-76.1) and a specificity of 97.9% (95% CI 96.0-99.0) for blood-based testing; sensitivity was greatest in patients with larger baseline tumors.

    CONCLUSIONS: Blood-based EGFR mutation testing demonstrated high specificity and good sensitivity, and offers a convenient and easily accessible diagnostic method to complement tissue-based tests. Patients with a discordant mutation status in plasma and tissue, had improved survival outcomes compared with those with a concordant mutation status, which may be due to their lower tumor burden. These data help to inform the clinical utility of this blood-based assay for the detection of EGFR mutations.

    Matched MeSH terms: DNA Mutational Analysis/methods
  19. Choong ML, Koay ES, Khoo KL, Khaw MC, Sethi SK
    Clin Chem, 1997 Jun;43(6 Pt 1):916-23.
    PMID: 9191540
    The Arg-to-Trp substitution at codon 3500 in the apolipoprotein (apo) B-100 gene is established as a cause of familial defective apo B-100 (FDB), a functional mutation, resulting in reduced LDL receptor binding and manifest hypercholesterolemia. In a search for similar mutations in 163 Malaysians, we screened the putative receptor-binding region (codons 3456-3553) of the apo B-100 gene by PCR amplification and denaturing gradient-gel electrophoresis. Four single-base mutations were detected and confirmed by DNA sequencing. Two females, a Chinese and a Malay, had the same CGG3500-->TGG mutation, resulting in an Arg3500-to-Trp substitution. This is the second published report of such an independent mutation involving the same codon as the established Arg3500-to-Gln mutation. The two other mutations detected, CTT3517-->CTG and GCC3527-->GCT, resulted in degenerate codons with no amino acid substitutions. All four mutations were associated with a unique apo B haplotype, different from those found in Caucasian FDB patients but concurring with that previously reported for two other Asians with FDB.
    Matched MeSH terms: DNA Mutational Analysis/methods
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links