Displaying all 17 publications

Abstract:
Sort:
  1. Khairat JE, Hatta MNA, Abdullah N, Azman AS, Calvin SYM, Syed Hassan S
    Biosci Rep, 2024 Mar 29;44(3).
    PMID: 38372298 DOI: 10.1042/BSR20231827
    Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.
    Matched MeSH terms: Cytoplasm/metabolism
  2. Dugina VB, Shagieva GS, Shakhov AS, Alieva IB
    Int J Mol Sci, 2021 Jul 22;22(15).
    PMID: 34360602 DOI: 10.3390/ijms22157836
    The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle β-cytoplasmic and γ-cytoplasmic actins (β-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the β/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. In this review, we briefly summarize the research results of recent years and consider the features of the cytoplasmic actins: The spatial organization in close connection with their functional activity in different cell types by focusing on endothelial cells.
    Matched MeSH terms: Cytoplasm/metabolism*
  3. Rahim SM, Mazlan AG, Simon KD, Delaunoy JP, Laurent P
    J Zhejiang Univ Sci B, 2014 Feb;15(2):194-200.
    PMID: 24510712 DOI: 10.1631/jzus.B1200297
    Pseudobranch function has long interested scientists, but its role has yet to be elucidated. Several studies have suggested that pseudobranchs serve respiratory, osmoregulatory, and sensory functions. This work investigated the immunolocalization of pseudobranch carbonic anhydrase (CA) in the teleost fish species rainbow trout (Oncorhynchus mykiss) to clarify its physiological function. CA was purified from rainbow trout gills O. mykiss and specific antibodies were raised. Immunoblotting between tissue homogenates of pseudobranch and gill CA antibodies showed specific immunostaining with only one band corresponding to CA in the pseudobranch homogenate. Results of immunohistochemical technique revealed that CA was distributed within pseudobranch cells and more precisely in the apical parts (anti-vascular) of cells. The basal (vascular) parts of cells, tubular system, blood capillaries, and pillar cells were not immunostained. Immunocytochemistry confirmed these results and showed that some CA enzyme was cytoplasmic and the remainder was linked to membranous structures. The results also showed that the lacunar tissue layers did not display immunoperoxidase activity. Our results indicated that pseudobranch CA may have a function related to the extracellular medium wherein CA intervenes with the mechanism of stimulation of afferent nerve fibers.
    Matched MeSH terms: Cytoplasm/metabolism
  4. Hashim H, Maruyama H, Masuda T, Arai F
    Sensors (Basel), 2016 Dec 01;16(12).
    PMID: 27916931
    Manipulation and injection of single nanosensors with high cell viability is an emerging field in cell analysis. We propose a new method using fluorescence nanosensors with a glass nanoprobe and optical control of the zeta potential. The nanosensor is fabricated by encapsulating a fluorescence polystyrene nanobead into a lipid layer with 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (SP), which is a photochromic material. The nanobead contains iron oxide nanoparticles and a temperature-sensitive fluorescent dye, Rhodamine B. The zeta potential of the nanosensor switches between negative and positive by photo-isomerization of SP with ultraviolet irradiation. The positively-charged nanosensor easily adheres to a negatively-charged glass nanoprobe, is transported to a target cell, and then adheres to the negatively-charged cell membrane. The nanosensor is then injected into the cytoplasm by heating with a near-infrared (NIR) laser. As a demonstration, a single 750 nm nanosensor was picked-up using a glass nanoprobe with optical control of the zeta potential. Then, the nanosensor was transported and immobilized onto a target cell membrane. Finally, it was injected into the cytoplasm using a NIR laser. The success rates of pick-up and cell immobilization of the nanosensor were 75% and 64%, respectively. Cell injection and cell survival rates were 80% and 100%, respectively.
    Matched MeSH terms: Cytoplasm/metabolism
  5. Kunasundari B, Murugaiyah V, Kaur G, Maurer FH, Sudesh K
    PLoS One, 2013;8(10):e78528.
    PMID: 24205250 DOI: 10.1371/journal.pone.0078528
    Cupriavidus necator H16 (formerly known as Hydrogenomonas eutropha) was famous as a potential single cell protein (SCP) in the 1970s. The drawback however was the undesirably efficient accumulation of non-nutritive polyhydroxybutyrate (PHB) storage compound in the cytoplasm of this bacterium. Eventually, competition from soy-based protein resulted in SCP not receiving much attention. Nevertheless, C. necator H16 remained in the limelight as a producer of PHB, which is a material that resembles commodity plastics such as polypropylene. PHB is a 100% biobased and biodegradable polyester. Although tremendous achievements have been attained in the past 3 decades in the efficient production of PHB, this bioplastic is still costly. One of the main problems has been the recovery of PHB from the cell cytoplasm. In this study, we showed for the first time that kilogram quantities of PHB can be easily recovered in the laboratory without the use of any solvents and chemicals, just by using the cells as SCP. In addition, the present study also demonstrated the safety and tolerability of animal model used, Sprague Dawley given lyophilized cells of C. necator H16. The test animals readily produced fecal pellets that were whitish in color, as would be expected of PHB granules. The pellets were determined to contain about 82-97 wt% PHB and possessed molecular mass of around 930 kg/mol. The PHB granules recovered biologically possessed similar molecular mass compared to chloroform extracted PHB [950 kg/mol]. This method now allows the production and purification of substantial quantities of PHB for various experimental trials. The method reported here is easy, does not require expensive instrumentation, scalable and does not involve extensive use of solvents and strong chemicals.
    Matched MeSH terms: Cytoplasm/metabolism
  6. Chowdhury EH
    Biochem Biophys Res Commun, 2011 Jun 17;409(4):745-7.
    PMID: 21624351 DOI: 10.1016/j.bbrc.2011.05.079
    Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.
    Matched MeSH terms: Cytoplasm/metabolism
  7. Dzaki N, Woo WK, Thangadurai S, Azzam G
    Exp Cell Res, 2019 12 15;385(2):111688.
    PMID: 31678212 DOI: 10.1016/j.yexcr.2019.111688
    CTPsyn is a crucial metabolic enzyme which synthesizes CTP nucleotides. It has the extraordinary ability to compartmentalize into filaments termed cytoophidia. Though the structure is evolutionarily conserved across kingdoms, the mechanisms behind their formation remain unknown. MicroRNAs (miRNAs) are short single-stranded RNA capable of directing mRNA silencing and degradation. D. melanogaster has a high total gene count to miRNA gene number ratio, alluding to the possibility that CTPsyn too may come under their regulation. A thorough miRNA overexpression involving 123 miRNAs was conducted, followed by CTPsyn-specific staining upon cytoophidia-rich egg chambers. This revealed a small group of candidates which confer either a lengthening or truncating effect on cytoophidia, suggesting they may play a role in regulating CTPsyn. MiR-975 and miR-1014 are both cytoophidia-elongating, whereas miR-190 and miR-932 are cytoophidia-shortening. Though target prediction shows that miR-975 and miR-932 do indeed have binding sites on CTPsyn mRNA, in vitro assays instead revealed a low probability of this being true, instead indicating that the effects asserted by overexpressed miRNAs indirectly reach CTPsyn and its cytoophidia through the actions of middling elements. In silico target prediction and qPCR quantification indicated that, at least for miR-932 and miR-1014, these undetermined elements may be players in fat metabolism. This is the first study to thoroughly investigate miRNAs in connection to CTPsyn expression and activity in any species. The findings presented could serve as a basis for further queries into not only the fundamental aspects of the enzyme's regulation, but may uncover new facets of closely related pathways as well.
    Matched MeSH terms: Cytoplasm/metabolism
  8. Al-batah MS, Isa NA, Klaib MF, Al-Betar MA
    Comput Math Methods Med, 2014;2014:181245.
    PMID: 24707316 DOI: 10.1155/2014/181245
    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.
    Matched MeSH terms: Cytoplasm/metabolism
  9. Iskandar ZA, Al-Joudi FS
    Malays J Pathol, 2006 Dec;28(2):101-5.
    PMID: 18376799 MyJurnal
    Survivin is an inhibitor of apoptosis protein and regulates the cell cycle in the G2/M phase. Survivin is expressed during embryonic and fetal development, selectively over-expressed in common human cancers and completely down-regulated in normal adult tissue. This work was aimed at studying the expression of the survivin homologues and their subcellular distribution in fetal and normal adult tissues of rat. Survivin expression was evaluated by immunohistochemistry in formalin-fixed, paraffin-embedded tissue sections of fetal and normal adult tissues of rat using the polyclonal serum SUR12A-CFI. This serum demonstrated intense positive survivin staining in adult kidney, ovary and oviduct, and a variable expression in different fetal organs, with particularly intense expression detected in the adrenal gland, liver, stomach, small intestine, colon, kidney and skin. In both fetal and adult tissues, the expression was predominantly cytoplasmic. It was concluded that survivin was abundantly and prominently expressed during fetal development in rat and that the polyclonal anti-human survivin antibody SUR12A-CFI is reactive with rat survivin.
    Matched MeSH terms: Cytoplasm/metabolism
  10. Jau MH, Yew SP, Toh PS, Chong AS, Chu WL, Phang SM, et al.
    Int J Biol Macromol, 2005 Aug;36(3):144-51.
    PMID: 16005060
    Three strains of Spirulina platensis isolated from different locations showed capability of synthesizing poly(3-hydroxybutyrate) [P(3HB)] under nitrogen-starved conditions with a maximum accumulation of up to 10 wt.% of the cell dry weight (CDW) under mixotrophic culture conditions. Intracellular degradation (mobilization) of P(3HB) granules by S. platensis was initiated by the restoration of nitrogen source. This mobilization process was affected by both illumination and culture pH. The mobilization of P(3HB) was better under illumination (80% degradation) than in dark conditions (40% degradation) over a period of 4 days. Alkaline conditions (pH 10-11) were optimal for both biosynthesis and mobilization of P(3HB) at which 90% of the accumulated P(3HB) was mobilized. Transmission electron microscopy (TEM) revealed that the mobilization of P(3HB) involved changes in granule quantity and morphology. The P(3HB) granules became irregular in shape and the boundary region was less defined. In contrast to bacteria, in S. platensis the intracellular mobilization of P(3HB) seems to be faster than the biosynthesis process. This is because in cyanobacteria chlorosis delays the P(3HB) accumulation process.
    Matched MeSH terms: Cytoplasm/metabolism
  11. Kok WL, Yusoff K, Nathan S, Tan WS
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):55-8.
    PMID: 12186783
    The PreS domain of hepatitis B virus (HBV) is believed to be involved in virion assembly and attachment to a hepatocyte receptor during infection. In order to study the functions of this region, we fused it to the g3p protein of bacteriophage M13 that allows the fusion protein to be displayed at the tip of the filament. The fusion protein was detected by the anti-E tag antibody on a Western blot. The polypeptide in a soluble form was produced by transfecting a non-suppressor E. coli host cell with the recombinant phagemid. The soluble protein was detected in cytoplasm, in the periplasmic space and also in the medium. The functional display of the PreS domain would provide an alternative means to study its interactions with the nuleocapsid and hepatocytes.
    Matched MeSH terms: Cytoplasm/metabolism
  12. Bhowmick S, Chakravarty C, Sellathamby S, Lal SK
    Arch Virol, 2017 Apr;162(4):919-929.
    PMID: 27942972 DOI: 10.1007/s00705-016-3153-8
    The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
    Matched MeSH terms: Cytoplasm/metabolism*
  13. Khan S, Zakariah M, Rolfo C, Robrecht L, Palaniappan S
    Oncotarget, 2017 May 09;8(19):30830-30843.
    PMID: 27027344 DOI: 10.18632/oncotarget.8306
    Although the idea of bacteria causing different types of cancer has exploded about century ago, the potential mechanisms of carcinogenesis is still not well established. Many reports showed the involvement of M. hominis in the development of prostate cancer, however, mechanistic approach for growth and development of prostate cancer has been poorly understood. In the current study, we predicted M. hominis proteins targeting in the mitochondria and cytoplasm of host cells and their implication in prostate cancer. A total of 77 and 320 proteins from M. hominis proteome were predicted to target in the mitochondria and cytoplasm of host cells respectively. In particular, various targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of programmed cell death. Furthermore, we investigated possible mechanisms of the mitochondrial and cytoplasmic targeted proteins of M. hominis in etiology of prostate cancer by screening the whole proteome.
    Matched MeSH terms: Cytoplasm/metabolism
  14. Ling KH, Brautigan PJ, Moore S, Fraser R, Cheah PS, Raison JM, et al.
    Genomics, 2016 Mar;107(2-3):88-99.
    PMID: 26802803 DOI: 10.1016/j.ygeno.2016.01.006
    Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4 sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis. We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or piRNA-like Sox4_sir3.
    Matched MeSH terms: Cytoplasm/metabolism
  15. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: Cytoplasm/metabolism*
  16. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
    Matched MeSH terms: Cytoplasm/metabolism
  17. Han H, Chou CC, Li R, Liu J, Zhang L, Zhu W, et al.
    Sci Rep, 2018 06 22;8(1):9566.
    PMID: 29934599 DOI: 10.1038/s41598-018-27724-3
    Chalocomoracin (CMR), one of the major secondary metabolites found in fungus-infected mulberry leaves, is a potent anticancer agent. However, its anticancer mechanism remains elusive. Here, we demonstrated the potent anti-tumor activity and molecular mechanism of CMR both in vitro and in vivo. We showed for the first time that CMR treatment markedly promoted paraptosis along with extensive cytoplasmic vacuolation derived from the endoplasmic reticulum, rather than apoptosis, in PC-3 and MDA-MB-231cell lines. Additional studies revealed that ectopic expression of Myc-PINK1 (PTEN-induced kinase 1), a key regulator of mitophagy, rendered LNCap cells susceptible to CMR-induced paraptosis, suggesting that the mitophagy-dependent pathway plays a crucial role in inducing paraptosis by activating PINK1. CMR treatment directly upregulated PINK1 and downregulated Alix genes in MDA-MB-231 and PC-3 cell lines. Furthermore, mitophagy signaling and paraptosis with cytoplasmic vacuolation could be blocked by antioxidant N-acetylcysteine (NAC), indicating the novel pathway was triggered by reactive oxygen species (ROS) production. An in vivo MDA-MB-231 xenograft tumor model revealed that CMR suppressed tumor growth by inducing vacuolation production through the same signal changes as those observed in vitro. These data suggest that CMR is a potential therapeutic entity for cancer treatment through a non-apoptotic pathway.
    Matched MeSH terms: Cytoplasm/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links