Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2010;59(3):157-60.
    PMID: 20124758
    In this study, difatty acyl urea has been successfully synthesized from corn oil using sodium ethoxide as a catalyst. Ethyl fatty ester and glycerol were produced as by-products. In this reaction, corn oil was refluxed with urea in ethanol. The highest conversion percentage (78%) was obtained when the process was carried out for 8 hours using urea to corn oil ratio of 5.6: 1.0 at 78 degrees C. Both difatty acyl urea and ethyl fatty ester have been characterized using elemental analysis, Fourier transform infrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique.
    Matched MeSH terms: Corn Oil/chemistry*
  2. Leemsuthep A, Zakaria Z, Tanrattanakul V, Ramarad S, Muniyadi M, Jaruga T, et al.
    Materials (Basel), 2021 Apr 28;14(9).
    PMID: 33924997 DOI: 10.3390/ma14092282
    This paper explored the effects of ammonium bicarbonate and different ratios of epoxy to polyamide on the formation of porous epoxy micro-beads through a single epoxy droplet. A single drop of a mixture, consisting of epoxy, polyamide, and ammonium bicarbonate, was dropped into heated corn oil at a temperature of 100 °C. An epoxy droplet was formed due to the immiscibility of the epoxy mixture and corn oil. The ammonium bicarbonate within this droplet underwent a decomposition reaction, while the epoxy and polyamide underwent a curing reaction, to form porous epoxy micro-beads. The result showed that the higher ammonium bicarbonate content in the porous, epoxy micro-beads increased the decomposition rate up to 11.52 × 10-3 cm3/s. In addition, a higher total volume of gas was generated when a higher ammonium bicarbonate content was decomposed. This led to the formation of porous epoxy micro-beads with a smaller particle size, lower specific gravity, and better thermal stability. At an epoxy to polyamide ratio of 10:6, many smaller micro-beads, with particle sizes ranging from 201 to 400 μm, were obtained at an ammonium bicarbonate content of 10 phr. Moreover, the porous epoxy micro-beads with open pores were shown to have a low specific gravity of about 0.93 and high thermal stability at a high ammonium bicarbonate content. Based on the findings, it was concluded that porous epoxy micro-beads were successfully produced using a single epoxy droplet in heated corn oil, where their shape and particle size depended on the content of ammonium bicarbonate and the ratio of epoxy to polyamide used.
    Matched MeSH terms: Corn Oil
  3. Rohman, A., Che Man, Y.B., Ismail, A., Puziah, H.
    MyJurnal
    FTIR spectroscopy in combination with multivariate calibrations, i.e. partial least square (PLS) and principle component regression (PCR) was developed for quantitative analysis of cod liver oil (CLO) in binary mixture with corn oil (CO). The spectra of CLO, CO and their blends with certain concentrations were scanned using horizontal attenuated total reflectance (HATR) accessory at mid infrared (MIR) region of 4,000 – 650 cm-1. The optimal spectral treatments selected for calibration models were based on its ability to provide the highest values of coefficient of determination (R2) and the lowest values of root mean error of calibration (RMSEC). PLS was slightly well suited for quantitative analysis of CLO compared to PCR. FTIR spectroscopy in combination with multivariate calibration offers rapid, no excessive chemical reagent, and easy in operational to be applied for determination of CLO in binary mixture with other oils.
    Matched MeSH terms: Corn Oil
  4. Afida, T., Mamot, S.
    MyJurnal
    Chicken fat is a potential bioresource that can be developed into a commercial product. In this study, chicken fat, which is rich in unsaturated fatty acids, including oleic acid (C18:1) and linoleic acid (C18:2), was enzymatically interesterified with corn oil to produce a soft spread. Two interesterified products, sample 16 (4% enzyme, 4:1 mole ratio of chicken fat to corn oil, 50°C and 42 h of the interesterification process) and sample 17 (4% enzyme, 2:1 mole ratio of chicken fat to corn oil, 30°C and 42 h of the interesterification process), were selected based on the highest SFC at 30oC which were close to SFC values of commercial product. A morphological study showed that the final products had smaller and less dense fat particles, which explained the lower melting temperatures and solid fat content (3.2 and 3.5% for samples 16 and 17, respectively, at 20°C) compared to the commercial products (9.7, 6.8 and 7.7% for products A, B and C, respectively, at 20°C). However, both sample 16 and 17 had similar thermal properties to a vegetable-oil-based commercial product, with melting enthalpies (ΔH) of 58.45 J/g and 71.40 J/g, and were fully melted at 31.40°C and 35.41°C, respectively.
    Matched MeSH terms: Corn Oil
  5. Nur Hanani ZA, Beatty E, Roos YH, Morris MA, Kerry JP
    Foods, 2013 Jan 02;2(1):1-17.
    PMID: 28239092 DOI: 10.3390/foods2010001
    The objectives of this study were to develop composite films using various gelatin sources with corn oil (CO) incorporation (55.18%) and to investigate the mechanical and physical properties of these films as potential packaging films. There were increases (p < 0.05) in the tensile strength (TS) and puncture strength (PS) of films when the concentration of gelatin increased. The mechanical properties of these films were also improved when compared with films produced without CO. Conversely, the water barrier properties of composite films decreased (p < 0.05) when the concentration of gelatin in composite films increased. Comparing with pure gelatin films, water and oxygen barrier properties of gelatin films decreased when manufactured with the inclusion of CO.
    Matched MeSH terms: Corn Oil
  6. Azimah, R., Azrina, A., Khoo, H.E.
    MyJurnal
    The aim of this study was to determine hydrolytic stability [acid value (AV)] and oxidative stability [peroxide value (PV) and conjugated dienes (CD)] of selected blended oils during potato frying. The blended oils were prepared by blending palm oil with corn oil (POCO), sesame oil (POSO) and rice bran oil (PORBO). Blended vegetable oils were prepared in a ratio of 1 to 1 (v/v) and tested for 0, 10 and 20 times after frying potato. AV and PV were determined by titration method, while CD was determined using the spectrophotometric method. Increasing frequency of oil frying contributed to increased level of AV in all blended oils. PVs were increased in all samples, with most noticeable increment observed in POSO, followed by PORBO and POCO. CD levels of the blended oils were also increased after 20 times of potato frying compared with the unused oil and after 10 times of frying. POCO was the most stable oil in terms of hydrolytic and oxidative stabilities. It is most suitable for deep-fat frying of potato chips and industrial application.
    Matched MeSH terms: Corn Oil
  7. Nuraznee Mashodi, Nurul Yani Rahim, Norhayati Muhammad, Saliza Asman
    MyJurnal
    Extra virgin olive oil (EVOO) is categorized as expensive oil due to high-quality nutritional value. Unfortunately, EVOO is easily adulterated with other low-quality edible oils. Therefore, this study was done to differentiate and analyze the adulteration of EVOO with other edible oils using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The study was used several edible oils included canola oil, corn oil, sunflower oil, and soybean oil as an adulterant for EVOO. The adulterant EVOO samples were prepared by mixing with dissimilar concentrations of the solely edible oils (20 %, 40 %, 60 % and 80 % (v/v)). The main functional groups of EVOO and other edible oils are O-H, C-H, C=C and C=O groups were assigned around 3500 cm-1, 2925 cm-1, 3006 cm-1 and 1745 cm-1 wavenumbers, respectively. From the comparison of EVOO and other adulterant edibles oil spectra, it showed that the EVOO has the lowest absorbance intensity at around 3006 cm-1 represented double bond which is closely related to the composition of oil sample. The adulteration of EVOO was evaluated by analysing the changes in the absorbance based on the linear regression analysis graph of the bands at 3006 and 2925 cm-1 and the limit of detection (LOD) was measured. The graph of A3008/A2925 with good relative coefficients (R2) and lower LOD is more favourable than the linear regression graph of A3006 versus percentage of edible oils added in EVOO. This study showed that ATR-FTIR spectroscopy is a convenient tool for analysing the adulteration of EVOO.
    Matched MeSH terms: Corn Oil
  8. Al-Faqeh, H.H., Muhammad, B.Y., Nafie, E.M., Khorshid, A.
    MyJurnal
    We attempted to investigate possible hepatoprotective effect of Eurycoma longifolia jack (ELJ) using carbon tetrachloride-induced (CC14) acute hepatotoxicity model in rats. Hepatotoxicity was induced by oral administration of 4.0mg/kg of CCI4 in corn oil (1:1) once to one experimental group of 5 rats and, in three other similar groups, challenged doses (300, 750 and 1500 mg/kg respectively) of ELJ were given one day before and one hour after 4.0 mg/kg CC14 and then once daily for three consecutive days. Three other groups of 5 rats each serving as controls were administered with distilled water, corn oil and ELJ (750mg/kg) only respectively. Rats were sacrificed on day three (corn oil & CC14 treated groups) and on day 4 (Distilled water, ELJ alone and CC14 with graded doses of ELJ treated groups) and samples of blood and liver tissue were taken for biochemical (serum) and histopathological examinations to assess hepatoprotection of ELJ against CC14-induced hepatotoxicity. In the low (300mg/kg) and medium (750 mg/kg) dose ELJ treated groups, CCI4 induced moderate inflammation, fatty acid change and necrosis of hepatocytes while in the high (1500mg/kg) dose ELJ, CC14 induced severe inflammation, fatty acid change and necrosis of hepatocytes. Biochemical measurements of ALT and ALP shows a moderate and insignificant reduction of serum levels in the low dose ELJ group but a more significant reduction in the medium and high dose ELJ groups when compared with the CC14 only group. The increase in serum total bilirubin caused by CC14 was non-significantly reduced by all the doses of ELJ. Animals treated with CC14 alone and in groups treated with both CC14 and graded doses of ELJ had a reduction in body weight, food and water intake but in ELJ (750mg/kg) only treated group, no such reduction in body weight, food and water intake was observed. This observation suggest that ELJ administered alone did not cause any toxic effect to the liver but in combination with CCI4, appeared to synergize the CC14-induced hepatotoxicity which increases as the dose of ELJ is increased. The anorexic, hypodypsic and reduced body weight evident in the CC14 alone and in ELJ plus CC14 treated groups but not in animals treated with ELJ alone, suggests that ELJ alone does not induce anorexia, hypodypsia or loss of weight. In conclusion, the results of our study suggest that ELJ is not hepatotoxic when given alone and appeared to have some degree of protective effects in rats against CC14-induced hepatotoxicity.
    Matched MeSH terms: Corn Oil
  9. Norerlyda, H., Fathimah, M., Nuraliza, A.S.
    MyJurnal
    Accumulation of reactive oxygen species leads to oxidative stress condition that can accelerate ovarian aging. Ovarian aging caused a reduction in plasma estradiol levels, quality of embryo and eventually will lead to infertility. Tocotrienol has been proven to possess antioxidant properties by protecting the cellular membrane from free radicals damage. Therefore, the aim of this study was to determine the effect of tocotrienol supplementation on the plasma estradiol levels, quality and development of embryos in aging mice. Female mice (Mus musculus) used in this study were divided into six groups. Six weeks old mice (young group) were used as negative control while eight months old mice (aging group) were used as age-matched (positive control) group. Group 1 (6 months old mice) were given corn oil as control, group 2, 3 and 4 (6 months old mice) were supplemented orally for two months with tocotrienol (TCT) at the dose of 90, 120 and 150 mg/kg body weight (BW), respectively. Subsequently, after two months the mice were superovulated, euthanized and 2- cell stage embryos were harvested and cultured in vitro to monitor the embryonic development. Plasma was analysed using enzyme-like immunosorbent assay. The results of this study showed that there was no significant correlation between plasma estradiol levels and the quality of embryo between young and aging group. Similarly, no significant change on plasma estradiol levels were noted in all TCT supplemented groups as compared to its vehicle control. On the other hand, there was a significant reduction on the percentage of normal embryo in all aging groups including TCT supplemented groups as compared to young group. Conversely, TCT supplementation at the dose of 150 mg/kg BW was able to increase the percentage of embryos that developed to blastocyst stage as compared to control. This finding proposed that TCT supplementations for two months are not able to cause a significant change in plasma estradiol levels and quality of embryo but it can delay the consequence of aging in embryonic development.
    Matched MeSH terms: Corn Oil
  10. Abbas Ali, Hadi Mesran, M., Nik Mahmood, N.A., Abd Latip, R.
    MyJurnal
    In the present work, the influence of microwave power and heating times on the quality
    degradation of corn oil was evaluated. Microwave heating test was carried out using a domestic
    microwave oven for different periods at low- and medium-power settings for the corn oil sample.
    The changes in physicochemical characteristics related to oil degradation of the samples during
    heating were determined by standard methods. In this study, refractive index, free fatty acid
    content, peroxide value, p-anisidine value, TOTOX value, viscosity and total polar compound
    of the oils all increased with increasing heating power and time of exposure. In GLC analysis,
    the percentage of linoleic acid tended to decrease, whereas the percentage of palmitic, stearic
    and oleic acids increased. The C18:2/C16:0 ratio decreased in all oil samples with increasing
    heating times. Exposing the corn oil to various microwave power settings and heating periods
    caused the formation of hydroperoxides and secondary oxidation products. The heating reduced
    the various tocopherol isomers in corn oil and highest reduction was detected in γ-tocopherol.
    Longer microwave heating times resulted in a greater degree of oil deterioration. Microwave
    heating caused the formation of comparatively lower amounts of some degradative products in
    the oil samples heated at low-power setting compared to medium-power setting. The present
    analysis indicated that oil quality was affected by both microwave power and heating time.
    Matched MeSH terms: Corn Oil
  11. Noor Aziah AA, Komathi CA
    J Food Sci, 2009 Sep;74(7):S328-33.
    PMID: 19895499 DOI: 10.1111/j.1750-3841.2009.01298.x
    This study was intended to investigate the potential of peeled and unpeeled pumpkin pulp as a raw material for the production of flour that could be used in composite blend with wheat flour or as a functional ingredient in food products. The peeled and unpeeled pumpkin pulp were soaked in sodium metabisulphite solution, sliced and dried overnight in a hot air oven, followed by milling into peeled pumpkin pulp flour (PPPF) and unpeeled pumpkin pulp flour (UPPF), respectively. The flours were then evaluated for physicochemical attributes (color, proximate compositions, and water activity) and functional properties (water holding capacity and oil holding capacity), in comparison to the commercial wheat flour. PPPF and UPPF were observed to be more attractive in terms of color than wheat flour, as indicated by the significantly higher results (P or= 0.05) was shown in water holding capacity of PPPF and wheat flour. However, the oil holding capacity of PPPF and UPPF was shown to be significantly higher (P
    Matched MeSH terms: Corn Oil/analysis
  12. Khor HT, Ng TT
    Int J Food Sci Nutr, 2000;51 Suppl:S3-11.
    PMID: 11271854
    Male hamsters were fed on semi-synthetic diets containing commercial corn oil (CO), isolated corn oil triglycerides (COTG), COTG supplemented with 30 ppm of alpha-tocopherol (COTGTL) and COTG supplemented with 81 ppm of alpha-tocopherol (COTGTH) as the dietary lipid for 45 days. Male albino guinea pigs were fed on commercial chow pellets and treated with different dosages of tocopherol and tocotrienols intra-peritoneally for 6 consecutive days. Serum and liver were taken for analysis. Our results show that stripping corn oil of its unsaponifiable components resulted in COTG which yielded lower serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and raised high-density lipoprotein cholesterol (HDL-C) and serum triglycerides (TG) levels. These results indicate that the COTG with its fatty acids are responsible for the hypocholesterolemic effect exhibited by corn oil. However, supplementing the COTG diet with alpha-tocopherol (alpha-T) at 30 ppm significantly raised the serum TC, LDL-C and TG levels, but did not alter the HDL-C level, indicating that alpha-T is hypercholesterolemic. Supplementing the COTG diet with alpha-T at 81 ppm raised the serum TC level but to a lesser extent as compared to that obtained with 30-ppm alpha-T supplementation. The increased TC, in this case, was reflected mainly by an increased in HDL-C level as the LDL-C level was unchanged. The TG level was also raised but to a lesser extent than that obtained with a lower alpha-T supplementation. The liver HMG CoA reductase (HMGCR) activity was exhibited (56%) by the COTG as compared to CO. Supplementation of alpha-T at 30 ppm to the COTG diet resulted in further inhibition (76%) of the liver HMGCR activity. On the contrary, supplementation of alpha-T at 81 ppm to COTG diet resulted in a highly stimulatory effect (131%) on the liver HMGCR activity. Short-term studies with guinea pigs treated intra-peritoneally with alpha-T showed that at low dosage (5 mg) the HMGCR activity was inhibited by 46% whereas increasing the dosage of alpha-T to 20 mg yielded lesser inhibition (18%) as compared to that of the control. Further increase in the dosage of alpha-T to 50 mg actually resulted in 90% stimulation of the liver HMGCR activity as compared to the control. These results clearly indicate that the effect of alpha-T on HMGCR activity was dose-dependent. Treatment of the guinea pigs with 10 mg of tocotrienols (T3) resulted in 48% inhibition of the liver HMGCR activity. However, treatment with a mixture of 5 mg of alpha-T with 10 mg of T3 resulted in lesser inhibition (13%) of the liver HMGCR activity as compared to that obtained with 10 mg of T3. The above results indicate that the alpha-T is hypercholesterolemic in the hamster and its effect on liver HMGCR is dose-dependent. T3 exhibited inhibitory effect on liver HMGCR and alpha-T attenuated the inhibitory effect of T3 on liver HMGCR.
    Matched MeSH terms: Corn Oil/chemistry
  13. Ng TK, Hassan K, Lim JB, Lye MS, Ishak R
    Am J Clin Nutr, 1991 04;53(4 Suppl):1015S-1020S.
    PMID: 2012009 DOI: 10.1093/ajcn/53.4.1015S
    The effects on serum lipids of diets prepared with palm olein, corn oil, and coconut oil supplying approximately 75% of the fat calories were compared in three matched groups of healthy volunteers (61 males, 22 females, aged 20-34 y). Group I received a coconut-palm-coconut dietary sequence; group II, coconut-corn-coconut; and group III, coconut oil during all three 5-wk dietary periods. Compared with entry-level values, coconut oil raised the serum total cholesterol concentration greater than 10% in all three groups. Subsequent feeding of palm olein or corn oil significantly reduced the total cholesterol (-19%, -36%), the LDL cholesterol (-20%, -42%%) and the HDL cholesterol (-20%, -26%) concentrations, respectively. Whereas the entry level of the ratio of LDL to HDL was not appreciably altered by coconut oil, this ratio was decreased 8% by palm olein and 25% by corn oil. Serum triglycerides were unaffected during the palm-olein period but were significantly reduced during the corn-oil period.
    Matched MeSH terms: Corn Oil/metabolism
  14. Dauqan E, Sani HA, Abdullah A, Kasim ZM
    Pak J Biol Sci, 2011 Mar 15;14(6):399-403.
    PMID: 21902064
    The objective of the study was to evaluate the effect of four different vegetable oils [red palm olein (RPO), palm olein (PO), corn oil (CO), coconut oil (COC)] on antioxidant enzymes activity of rat liver. Sixty six Sprague Dawley male rats which were randomly divided into eleven groups of 6 rats per group and were treated with 15% of RPO, PO, CO and COC for 4 and 8 weeks. Rats in the control group were given normal rat pellet only while in treated groups, 15% of additional different vegetable oils were given. After 4 weeks of treatment the catalase (CAT) activity results showed that there was no significance difference (p > or = 0.05) between the control group and treated groups while after 8 weeks of treatment showed that there was no significant different (p > or = 0.05) between control group and RPO group but the treated rat liver with PO, CO and COC groups were the lowest and it were significantly lower (> or = 0.05) than control group. For superoxide dismutase (SOD) there was no significance difference (p > or = 0.05) between the control group and treated groups of vegetable oils after 4 and 8 weeks of treatment. Thus the study indicated that there was no significant (p > or = 0.05) effect on antioxidant enzyme (superoxide dismutase) but there was significant effect (p > or = 0.05) on catalase in rat liver.
    Matched MeSH terms: Corn Oil/pharmacology
  15. Karupaiah T, Tan CH, Chinna K, Sundram K
    J Am Coll Nutr, 2011 Dec;30(6):511-21.
    PMID: 22331686
    OBJECTIVE: Saturated fats increase total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) and are linked to coronary artery disease risk. The effect of variance in chain length of saturated fatty acids (SFA) on coronary artery disease in human postprandial lipemia is not well elucidated.

    METHODS: A total of 20 healthy volunteers were challenged with 3 test meals, similar in fat content (~31% en) but varying in saturated SFA content and polyunsaturated/saturated fatty acid ratios (P/S). The 3 meals were lauric + myristic acid-rich (LM), P/S 0.19; palmitic acid-rich (POL), P/S 0.31; and stearic acid-rich (STE), P/S 0.22. Blood was sampled at fasted baseline and 2, 4, 5, 6, and 8 hours. Plasma lipids (triacylglycerol [TAG]) and lipoproteins (TC, LDL-C, high density lipoprotein-cholesterol [HDL-C]) were evaluated.

    RESULTS: Varying SFA in the test meal significantly impacted postprandial TAG response (p < 0.05). Plasma TAG peaked at 5 hours for STE, 4 hours for POL, and 2 hours for LM test meals. Area-under-the-curve (AUC) for plasma TAG was increased significantly after STE treatment (STE > LM by 32.2%, p = 0.003; STE > POL by 27.9%, p = 0.023) but was not significantly different between POL and LM (POL > LM by 6.0%, p > 0.05). At 2 hours, plasma HDL-C increased significantly after the LM and POL test meals compared with STE (p < 0.05). In comparison to the STE test meal, HDL-C AUC was elevated 14.0% (p = 0.005) and 7.6% (p = 0.023) by the LM and POL test meals, respectively. The TC response was also increased significantly by LM compared with both POL and STE test meals (p < 0.05).

    CONCLUSIONS: Chain length of saturates clearly mediated postmeal plasma TAG and HDL-C changes.

    Matched MeSH terms: Corn Oil/administration & dosage; Corn Oil/chemistry
  16. Shakirin FH, Azlan A, Ismail A, Amom Z, Yuon LC
    Oxid Med Cell Longev, 2012;2012:840973.
    PMID: 22685623 DOI: 10.1155/2012/840973
    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil.
    Matched MeSH terms: Corn Oil/pharmacology
  17. Paraidathathu, Thomas, Lee, S.H.
    Ann Dent, 1999;6(1):-.
    MyJurnal
    The population in Malaysia use various types of health and food supplements. These products are considered safe and are used without any concern for their toxicity. Among the products used as health supplements are products that contain lactic acid bacteria. This project studied the acute and subacute toxicity of a product containing minerals, herbs, vitamins and live lactic acid bacteria, on Sprague- Dawley rats. Acute toxicity was tested 24 hours after a single dose and subacute toxicity was studied 24 hours after 7 days of daily dosing. The parameters that were studied were alanine aminotransferase (AL T,SGPT), aspartate aminotransferase (AST, SGOT), serum urea, ratios of weight of kidney and liver weight to body weight and percentage changes in body weights. The contents of capsules of the product (6, 8 or lO capsules for acute studies and 6, 10 and 12 for subacute studies) were mixed with corn oil and fed orally to rats. Control rats were fed with corn oil alone. In the acute studies, the level of ALT in the rats treated with the contents of the capsule was lower than controls. There were no significant changes in the other parameters of the rats in the treatment groups as compared to controls. There were no significant differences in all the parameters between rats in the treatment groups as compared to controls in the subacute studies. Sprague-Dawley rats fed with high doses of the product did not show signs of toxicity in the parameters that were studied.
    Matched MeSH terms: Corn Oil
  18. Siti Balkis Budin, Izatus Shima Taib, Putri Ayu Jayusman, Hui HC, Ramalingam A, Ahmad Rohi Ghazali, et al.
    Sains Malaysiana, 2014;43:1031-1036.
    Fenitrothion (FNT) usage has received much attention for its potential to promote free radicals generation and interfere with antioxidant defense system. The aim of the present study was to investigate the effect of palm oil tocotrienol rich fraction (TRF) supplementation on oxidative stress and histological changes in rat brain induced by FNT. A total of 32 male Sprague Dawley rats divided into four groups: control group which received corn oil; TRF group was received palm oil TRF (200 mg/kg bw); FNT group administered with FNT (20 mg/kg bw) and TRF+FNT group pretreated with palm oil TRF (200 mg/kg bw) 30 min prior to administration of FNT (20 mg/kg bw). FNT and TRF were dissolved in corn oil and all supplementations were given by oral gavage once daily for 28 days. After four weeks of supplementation, TRF+FNT rats had significantly lower malondialdehyde (MDA) content and superoxide dismutase (SOD) activity but higher reduced glutathione (GSH) level and total protein level compared to FNT rats (p<0.05). However, protein carbonyl (PC) level was insignificantly lower for TRF+FNT group compared to FNT group. In conclusion, this study suggested that palm oil TRF was effective in preventing brain damage in rats.
    Matched MeSH terms: Corn Oil
  19. Putri Ayu Jayusman, Siti Balkis Budin, Putri Ayu Jayusman SBB, Izatus Shima Taib, Ahmad Rohi Ghazali
    Sains Malaysiana, 2017;46:1603-1609.
    Exposure to organophosphate pesticide including fenitrothion (FNT) has led to many adverse effects on human health.
    However, a potent antioxidant like palm oil tocotrienol-rich fraction (TRF) can reduce oxidative damage in various
    pathological conditions, could also reduce the adverse effects by FNT. The aim of this study was to evaluate the effect
    of TRF on oxidative liver damage in FNT induce hepatotoxicity in experimental rats. A total of 40 male Sprague-Dawley
    rats were randomly divided into four groups of 10, namely control, TRF, FNT and TRF+FNT group. TRF (200 mg/kg
    body weight) and FNT (20 m/kg body weight) were administered through oral gavage for 28 days. Corn oil which
    served as vehicle was given orally to the control group. At the end of the study period, liver and blood was taken for
    oxidative damage and biochemical evaluation and histological observation. TRF supplementation prevents oxidative
    liver damage by reducing the hepatic malondialdehyde (MDA) and protein carbonyl (PCO) level significantly. Besides,
    TRF also restored the endogenous antioxidants particularly reduced glutathione (GSH), glutathione peroxidase (GPx)
    and ferric reducing/antioxidant power (FRAP). TRF also prevent liver damage by reducing the liver enzymes, alanine
    aminotransferase (ALT) and aspartate aminotransferase (AST). The attenuation of liver damage by TRF was also showed
    histologically. In conclusion, TRF supplementation showed a potential in preventing oxidative liver damage in FNTtreated
    rats by reducing the oxidative damage and improving the antioxidant status.
    Matched MeSH terms: Corn Oil
  20. Ahmed Atia, Nadia Salem Alrawaiq, Azman Abdullah
    Sains Malaysiana, 2018;47:2799-2809.
    Glutathione S-transferase isoenzymes (GSTs) catalyze the conjugation reaction between glutathione and electrophilic
    compounds. GSTs are involved in the detoxification of toxic and carcinogenic compounds, thus protecting the body from
    toxic injuries. Tocotrienols are part of the vitamin E family and is believed to possess potent antioxidant activity. The
    objective of this study was to determine the effect of increasing doses of tocotrienol rich fraction (TRF) supplementation
    on liver GSTs gene and protein expression. A total of 30 male ICR white mice were divided into five groups (n=6 for each
    group) and given treatment for 14 days through oral supplementation. Groups were divided as follows: - three groups
    administered with TRF at doses of 200, 500 and 1000 mg/kg, respectively, a positive control group administered with 100
    mg/kg butylated hydroxyanisole (BHA) and a control group administered with only the vehicle (corn oil). At day 15, the
    mice were sacrificed and their livers isolated. Total RNA was extracted from the liver and quantitative real-time polymerase
    chain reaction (qPCR) assays were performed to analyze GSTs gene expression. Total liver protein was also extracted
    and the protein expression of GSTs was determined by Western blotting. The results showed that TRF oral supplementation
    caused a significant dose-dependent increase in liver GST isoenzymes gene and protein expression, compared to controls.
    In conclusion, TRF oral supplementation for 14 days resulted in increased gene and protein expression of GST isoenzymes
    in mice liver dose-dependently, with the highest expression seen in mice treated with 1000 mg/kg TRF.
    Matched MeSH terms: Corn Oil
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links