An outstanding amount of resources has been used in research on manipulation of human stem cells, especially mesenchymal stem cells (MSCs), for various clinical applications. However, human MSCs have not been fully utilized in clinical applications due to restrictions with regard to their certain biosafety and bioefficacy concerns, for example, genetic abnormality, tumor formation, induction of host immune response and failure of homing and engraftment. This review summarizes the biosafety and bioefficacy assessment of human MSCs in terms of genetic stability, tumorigenicity, immunogenicity, homing and engraftment. The strategies used to reduce the biosafety concerns and improve the bioefficacy of human MSCs are highlighted. In addition, the approaches that can be implemented to improve their biosafety and bioefficacy assessment are briefly discussed.
Citation: Buku Panduan Keselamatan Makmal Perubatan Klinik Kesihatan. Putrajaya: Bahagian Pembangunan Kesihatan Keluarga, Kementerian Kesihatan Malaysia; 2009
Translation:
Guideline on medical laboratory safety in health clinic. Putrajaya: Family Health Development Division, Ministry of Health, Malaysia; 2009
DOG(R)1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOG(R)1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l(-1) 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOG(R)1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOG(R)1 gene and 2-DOG for regenerating transgenic oil palm.
Presently, there is no specific federal legislation governing articular cartilage tissue engineering (ACTE) experimenta- tion practices in Malaysia. However, there are related regulations and guidelines provided by government agencies to oversee and guide such practices. The rules and regulations provided in the documents have the essential aim of safeguarding public health through ensuring that non-clinical studies reach a certain quality, efficient and safe for hu- man use. There are themes identified when scrutinising relevant documents which includes, the need for authorised personnel and the establishment of facilities in conducting such experiments, the aspect of cell-scaffold construct development, the use of human materials, the aspect of biosafety, animal care and use during the experiments, and considerations on the impact on the environment. The individual laboratory or facility shall adopt and adapt these standards as deemed appropriate by the ACTE researchers to ensure that non-clinical studies are conducted in a proper and ethical manner.
Giant cell tumours of bone are best treated by extended curettage and filling in of the defect with cement or bone graft. In more advanced stages, when there is extensive loss of cortical bone cover, containment of the filling material is not possible and resection and reconstruction is required. We report a case of a recurrent giant cell tumour of the distal tibia in a 21-year-old female with extensive cortical bone loss in which polypropylene surgical mesh was used to contain the bone cement, thus avoiding a resection.
Bacillus anthracis is a bacterial pathogen of major concern. The spores of this bacteria can survive harsh environmental conditions for extended periods and are well recognized as a potential bioterror weapon with significant implications. Accurate and timely identification of this Bacillus species in the diagnostic laboratory is essential for disease and public health management. Biosafety Level 3 measures and ciprofloxacin treatment were instituted when B. anthracis was suspected from a patient with gangrenous foot. 16S rDNA sequencing was performed to accurately identify the suspected bacterium, due to the superiority of this method to accurately identify clinically isolated bacteria. B. megaterium was identified as the causative agent and the organism was subsequently treated as a Biosafety Level 2 pathogen.
Template-assisted growth is an important nanoelectrochemical deposition technique for synthesizing one-dimensional (1-D) nanostructures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodisation of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nanostructures in the form of nanowires using PAA templates as scaffolds. Axial heterostructured and homogeneous nanowires formed by engineering materials configuration via composition and/or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to elucidate the microstructures, morphologies and chemical compositions of the nanowires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nanostructures have useful applications as critical components in nanosensor devices and various areas of nanotechnology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals.