OBJECTIVES: To identify the species distribution, antibiotic susceptibility patterns and clinical profiles of CoNS isolated from blood cultures among paediatric patients in Hospital Kuala Lumpur (HKL).
METHODS: This study involved CoNS isolation from blood cultures of paediatric in-patients of the Paediatric Institute HKL. Isolates were identified to species level using Analytical Profile Index Staph identification strips and antimicrobial susceptibility pattern following Kirby-Bauer Disc Diffusion method. The clinical profiles of patients were obtained from their medical records.
RESULTS: Eleven CoNS species were identified from 148 isolates. Staphylococcus epidermidis was the most frequent species isolated (67.6%). The majority of the isolates showed resistance to penicillin (85.8%); while 70.3% were methicillin-resistant (MR) CoNS, which demonstrated a significant association with true infection (p=0.021). Predictors for significant CoNS infection included thrombocytopaenia, presence of predisposing factors, nosocomial infection, blood collected from peripheral vein, and CoNS isolated from two consecutive blood cultures. The most common predisposing factors for the isolation of CoNS were the presence of peripheral (54.1%) and central venous catheters (35.1%).
CONCLUSION: CoNS can cause significant bloodstream infections. The isolation of CoNS from blood cultures should be carefully interpreted by considering the predictive factors. Local data regarding predictive factors of patients with culture-positive CoNS, species distribution and antimicrobial susceptibility pattern are useful to determine the significance of blood culture results and care management of patients.
Methods: A cross-sectional study was conducted from March to July 2019 on 126 students and 37 laboratory staff/clinical instructors' MPs from the Faculty of Health Sciences, Universiti Teknologi MARA, Malaysia by a simple random sampling technique. Along with the questionnaire, a swab sample from each participant's MPs was collected and transported to the microbiology laboratory for bacterial culture as per standard microbiological procedures and antimicrobial susceptibility test by the disc diffusion technique. Data were analysed by the Statistical Package for Social Sciences Programme version 24.
Results: All of the tested MPs were contaminated with either single or mix bacterial agents. Bacillus spp. (74.8%), coagulase-negative staphylococci (CoNS; 47.9%) and S. aureus (20.9%) were the most predominant bacterial isolates, whilst the least isolate was Proteus vulgaris (P. vulgaris) (2.5%). Oxacillin resistance was seen in 5.9% of S. aureus isolate. A comparison of bacteria type and frequency among gender showed a significant difference with P. vulgaris (P = 0.003) and among profession showed a significant difference with S. aureus (P = 0.004).
Conclusion: The present study indicates that MPs can serve as a vector for both pathogenic and non-pathogenic organisms. Therefore, full guidelines about restricting the use of MPs in laboratory environments, hand hygiene and frequent decontamination of MPs are recommended to limit the risk of cross-contamination and healthcare-associated infections caused by MPs.
Material and Methods: Retrospective review was done to the patients who received two-stage revisions with an antibiotic loaded cement-spacer for PJI of the hip between January 2010 to May 2015. We found 65 patients (65 hips) with positive culture findings. Eight patients were lost to follow-up and excluded from the study. Among the rest of the 57 patients, methicillin-resistant infection (MR Group) was found in 28 cases. We also evaluate the 29 other cases that caused by the other pathogen as control group. We compared all of the relevant medical records and the treatment outcomes between the two groups.
Results: The mean of follow-up period was 33.7 months in the methicillin-resistant group and 28.4 months in the control group (p = 0.27). The causal pathogens in the methicillin-resistant group were: Methicillin-resistant Staphylococcus aureus (MRSA) in 10 cases, Methicillin-resistant Staphylococcus epidermidis (MRSE) in 16 cases and Methicillin-resistant coagulase-negative Staphylococcus (MRCNS) in two cases. The reimplantation rate was 92.8% and 89.6% in the methicillin-resistant and control group, respectively (p= 0.66). The rates of recurrent infection after reimplantation were 23.1% (6/26) in the methicillin-resistant group and 7.6% (2/26) in the control group (p= 0.12). The overall infection control rate was 71.4% (20/28) and 89.6% (26/29) in the methicillin-resistant and control group, respectively (p = 0.08). Both groups showed comparable baseline data on mean age, BMI, gender distribution, preoperative ESR/CRP/WBC and comorbidities.
Conclusions: Two-stage revision procedure resulted in low infection control rate and high infection recurrency rate for the treatment of methicillin-resistant periprosthetic joint infection (PJI) of the hip. Development of the treatment strategy is needed to improve the outcome of methicillin-resistant periprosthetic joint infection (PJI) of the hip.