The effect of ovariectomy and sex hormone/s replacement in female rats was investigated by the determination of the tumour marker enzymes gamma-glutamyltranspeptidase (GGT) and alkaline phosphatase (ALP). This was compared to ovariectomized rats receiving sex hormone replacement and treated with carcinogen. Ovariectomy significantly increased the activity of plasma GGT. Plasma and microsomal ALP and microsomal GGT were unchanged. When replacements of estrogen (E), or progesterone (Prog), or combinations of both estrogen and progesterone were given to ovariectomized rats, the activity of plasma GGT was brought to the level of normal intact females. Treatment with carcinogen increased the PGGT activities in intact rats. In ovariectomized rats receiving carcinogen, the PGGT activities were significantly lower than in intact females and rats receiving both hormone replacement and carcinogen (p < 0.01). Carcinogen treatment in case of estrogen or progesterone replacement, either individually or in combination, showed GGT activities comparable to intact females receiving carcinogen. Both plasma and microsomal ALP were not affected by carcinogen administration. These results showed that ovariectomy reduced the severity of hepatocarcinogenesis while sex hormone replacement worsened the process.
Early studies reported that a styrylpyrone derivative (SPD) purified from the Goniothalamus sp. acts as a non-competitive antiestrogen in early pregnant mice (1). In the immature rat uterine wet weight test, we found that SPD markedly reduced uterine weight at doses 1 and 100 mg/kg, thus reflecting negative antiestrogenicity, probably attributed to low binding affinities towards ER. Tamoxifen (Tam) on the other hand exhibited partial antiestrogenicity at all doses (0.01-10 mg/kg BW) and dose-dependent estrogenicity. However, the estrogen antagonism: agonism ratio for SPD is much higher than Tam, which is indicative of the breast cancer antitumor activity as seen in compounds such as MER-25. Pretreatment assessment on 1 mg/kg BW SPD and Tam showed that SPD is not a very good, estrogen antagonist compared to Tam, as it was unable to revert the estrogenicity effect of estradiol benzoate (EB) on immature rat uterine weight. Antitumor activity assessment for SPD exhibited significant tumor growth retardation in 7,12-dimethyl benzanthracene (DMBA) induced rat mammary tumors at all doses employed (2, 10 and 50 mg/kg) compared to the controls (p < 0.01). This compound was found to be more potent than Tam (2 and 10 mg/kg) and displayed greater potency at a dose of 10 mg/kg. It caused complete remission of 33.3% of tumors but failed to prevent onset of new tumors. However, SPD administration at 2 mg/kg caused 16.7% complete remission and partial remission. It also prevented the onset of new tumors throughout the experiment.