Displaying all 4 publications

Abstract:
Sort:
  1. Karsani SA, Othman I
    Biochem Biophys Res Commun, 2009 Nov 13;389(2):343-8.
    PMID: 19728988 DOI: 10.1016/j.bbrc.2009.08.145
    The Malayan krait (Bungarus candidus) is one of the medically most important snake species in Southeast Asia. The venom from this snake has been shown to posses both presynaptic and post-synaptic neurotoxins. We have isolated a previously uncharacterized post-synaptic neurotoxin - alphaN3 from the venom of B. candidus. Isolation of the toxin was achieved in three successive chromatography steps - gel filtration on a Sephadex G75 column, followed by ion exchange chromatography (Mono-S strong cationic exchanger) and a final reverse-phase chromatography step (PRO-RPC C18 column). Purified toxin alphaN3 was shown to have an apparent molecular weight of approximately 7 to 8 kDa on SDS-PAGE. The complete amino acid sequence of toxin alphaN3 was determined by Edman degradation and was found to share a high degree of homology with known post-synaptic neurotoxins (93% with alpha-bungarotoxin from Bungarus multicinctus, 50% with alpha cobratoxin from Naja kaouthia). The intravenous LD(50) of toxin alphaN3 was determined to be 0.16+/-0.09 microg/g in mice which is comparable to alpha-bungarotoxin from B. multicinctus. Experiments with isolated nerve-muscle preparations suggested that toxin alphaN3 was a post-synaptic neurotoxin that produced complete blockade of neuromuscular transmission by binding to nicotinic acetylcholine receptors.
    Matched MeSH terms: Bungarotoxins/isolation & purification
  2. Chanhome L, Puempunpanich S, Omori-Satoh T, Chaiyabutr N, Sitprija V
    J Nat Toxins, 2002 Dec;11(4):353-6.
    PMID: 12503879
    Immunization with Bungarus candidus venom was performed in four rabbits at high dose (initial dose, 75 microg/kg) and low dose (initial dose, 50 microg/kg). Each dose group consisted of two rabbits; one rabbit received the venom subcutaneously (s.c.) and the other intradermally (i.d.). The venom was injected as emulsified solutions with the same volume of Freund's complete adjuvant until the 4th immunization, thereafter as plain solutions. By stepwise increments of the immunizing dose, the higher dose group received a dose of 200 microg/kg and the lower dose group 150 microg/kg after the 5th immunization, respectively. Thereafter, seven additional immunizations were performed within six months. All rabbits were sacrificed two weeks after the last immunization (12th). Antilethal activity of the immunized antisera thus obtained was determined not only with the homologous venom but also with two heterologous venoms from Bungarus fasciatus and Bungarus flaviceps. Immunodiffusion analysis was also performed with these venoms. The results obtained in this pilot trial provided useful information for production of Malayan krait antivenom at Queen Saovabha Memorial Institute.
    Matched MeSH terms: Bungarotoxins/isolation & purification
  3. Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I
    Biochem Pharmacol, 2014 Oct 1;91(3):409-16.
    PMID: 25064255 DOI: 10.1016/j.bcp.2014.07.001
    Presynaptic neurotoxins are one of the major components in Bungarus venom. Unlike other Bungarus species that have been studied, β-bungarotoxin has never been isolated from Bungarus fasciatus venom. It was hypothesized that the absence of β-bungarotoxin in this species was due to divergence during evolution prior to evolution of β-bungarotoxin. In this study, we have isolated a β-bungarotoxin isoform we named P-elapitoxin-Bf1a by using gel filtration, cation-exchange and reverse-phase chromatography from Malaysian B. fasciatus venom. The toxin consists of two heterogeneous subunits, subunit A and subunit B. LCMS/MS data showed that subunit A was homologous to acidic phospholipase A2 subunit A3 from Bungarus candidus and B. multicinctus venoms, whereas subunit B was homologous with subunit B1 from B. fasciatus venom that was previously detected by cDNA cloning. The toxin showed concentration- and time-dependent reduction of indirect-twitches without affecting contractile responses to ACh, CCh or KCl at the end of experiment in the chick biventer preparation. Toxin modification with 4-BPB inhibited the neurotoxic effect suggesting the importance of His-48. Tissue pre-incubation with monovalent B. fasciatus (BFAV) or neuro-polyvalent antivenom (NPV), at the recommended titer, was unable to inhibit the twitch reduction induced by the toxin. This study indicates that Malaysian B. fasciatus venom has a unique β-bungarotoxin isoform which was not neutralized by antivenoms. This suggests that there might be other presynaptic neurotoxins present in the venom and there is a variation in the enzymatic neurotoxin composition in venoms from different localities.
    Matched MeSH terms: Bungarotoxins/isolation & purification*
  4. Rusmili MR, Tee TY, Mustafa MR, Othman I, Hodgson WC
    Biochem Pharmacol, 2014 Mar 15;88(2):229-36.
    PMID: 24440452 DOI: 10.1016/j.bcp.2014.01.004
    Bungarus fasciatus is one of three species of krait found in Malaysia. Envenoming by B. fasciatus results in neurotoxicity due to the presence of presynaptic and postsynaptic neurotoxins. Antivenom, either monovalent or polyvalent, is the treatment of choice in systemically envenomed patients. In this study, we have isolated a postsynaptic neurotoxin which we named α-elapitoxin-Bf1b. This toxin has an approximate molecular weight of 6.9 kDa, with LCMS/MS data showing that it is highly homologous with Neurotoxin 3FTx-RI, a toxin identified in the Bungarus fasciatus venom gland transcriptome. α-Elapitoxin-Bf1b also shared similarity with short-chain neurotoxins from Laticauda colubrina and Pseudechis australis. α-Elapitoxin-Bf1b produced concentration- and time-dependent neurotoxicity in the indirectly-stimulated chick biventer cervicis muscle preparation, an effect partially reversible by repetitive washing of the preparation. The pA2 value for α-elapitoxin-Bf1b of 9.17 ± 0.64, determined by examining the effects of the toxin on cumulative carbacol concentration-response curves, indicated that the toxin is more potent than tubocurarine and α-bungarotoxin. Pre-incubation of Bungarus fasciatus monovalent and neuro polyvalent antivenom failed to prevent the neurotoxic effects of α-elapitoxin-Bf1b in the chick biventer cervicis muscle preparation. In conclusion, the isolation of a postsynaptic neurotoxin that cannot be neutralized by either monovalent and polyvalent antivenoms may indicate the presence of isoforms of postsynaptic neurotoxins in Malaysian B. fasciatus venom.
    Matched MeSH terms: Bungarotoxins/isolation & purification*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links