METHODS: Adult female SD rats were injected with 2 mg/kg 17β-oestradiol (E2) to synchronize their oestrous cycle. A day after injection, uteri were removed for in-vitro contraction studies. The dose dependent effect of Ficus deltoidea aqeous extract (FDA) on the tension produced by the isolated rat's uteri was determined. The effects of atropine (2×10(-8) M), atosiban (0.5 IU), THG113.31 (10 μM), oxodipine (0.25 mM), EDTA (1 mM), 2-amino-ethoxy-diphenylborate (2-APB) (40 mM) and thapsigargin (1 mM) on the maximum force of contraction (Emax) achieved following 2 mg/ml FDA administration were also investigated.
RESULTS: FDA induced in-vitro contraction of the isolated rat's uteri in a dose-dependent manner. Administration of atropine, atosiban and THG113.31 reduced the Emax with atosiban having the greatest effect. The Emax was also reduced following oxodipine and EDTA administration. There was no significant change observed following 2-APB administration. Thapsigargin, however, augmented Emax.
CONCLUSIONS: FDA-induced contraction of the isolated rat's uteri is mediated via multiple uterotonin receptors (muscarinic, oxytocin and prostaglandin F2α) and was dependent on the extracellular Ca2+. Contraction, however, was not dependent on the Ca2+ release from the internal stores. This in-vitro study provides the first scientific evidence on the claimed effect of Ficus Deltoidea on uterine contraction.
Objective: This study aims to fractionate water extract of Labisia pumila, identify the compound(s) involved and elucidate the possible mechanism(s) of its vasorelaxant effects.
Methods: Water extract of Labisia pumila was subjected to liquid-liquid extraction to obtain ethyl acetate, n-butanol and water fractions. In SHR aortic ring preparations, water fraction (WF-LPWE) was established as the most potent fraction for vasorelaxation. The pharmacological mechanisms of the vasorelaxant effect of WF-LPWE were investigated with and without the presence of various inhibitors. The cumulative dose-response curves of potassium chloride (KCl)-induced contractions were conducted to study the possible mechanisms of WF-LPWE in reducing vasoconstriction.
Results: WF-LPWE produced dose-dependent vasorelaxant effect in endothelium-denuded aortic ring and showed non-competitive inhibition of dose-response curves of PE-induced contraction, and at its higher concentrations reduced KCl-induced contraction. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) significantly inhibited vasorelaxant effect of WF-LPWE. WF-LPWE significantly reduced the release of intracellular calcium ion (Ca2+) from the intracellular stores and suppressed the calcium chloride (CaCal2)-induced contraction. Nω-nitro-L-arginine methyl ester (L-NAME), methylene blue, indomethacin and atropine did not influence the vasorelaxant effects of WF-LPWE.
Conclusion: WF-LPWE exerts its vasorelaxant effect independently of endothelium and possibly by inhibiting the release of calcium from intracellular calcium stores, receptor-operated calcium channels and formation of inositol 1,4,5- triphosphate. WF-LPWE vasorelaxant effect may also mediated via nitric oxide-independent direct involvement of soluble guanylate cyclase (sGC)/ cyclic guanosine monophosphate (cGMP) pathways.