Displaying all 3 publications

Abstract:
Sort:
  1. Yap SK, Zakaria Z, Othman SS, Omar AR
    J Vet Sci, 2018 Mar 31;19(2):207-215.
    PMID: 28693312 DOI: 10.4142/jvs.2018.19.2.207
    Pasteurella multocida serotype B:2 causes hemorrhagic septicemia in cattle and buffalo. The invasion mechanism of the bacterium when invading the bloodstream is unclear. This study aimed to characterize the effects of immunomodulatory molecules, namely dexamethasone and lipopolysaccharide, on the invasion efficiency of P. multocida serotype B:2 toward bovine aortic endothelial cells (BAECs) and the involvement of actin microfilaments in the invasion mechanism. The results imply that treatment of BAECs with lipopolysaccharide at 100 ng/mL for 24 h significantly increases the intracellular bacteria number per cell (p < 0.01) compared with those in untreated and dexamethasone-treated cells. The lipopolysaccharide-treated cells showed a significant decrease in F-actin expression and an increase in G-actin expression (p < 0.001), indicating actin depolymerization of BAECs. However, no significant differences were detected in the invasion efficiency and actin filament reorganization between the dexamethasone-treated and untreated cells. Transmission electron microscopy showed that P. multocida B:2 resided in a vacuolar compartment of dexamethasone-treated and untreated cells, whereas the bacteria resided in cellular membrane of lipopolysaccharide-treated cells. The results suggest that lipopolysaccharide destabilizes the actin filaments of BAECs, which could facilitate the invasion of P. multocida B:2 into BAECs.
    Matched MeSH terms: Aorta/microbiology*
  2. Kamal NM, Zamri-Saad M, Masarudin MJ, Othman S
    BMC Vet Res, 2017 Jun 19;13(1):186.
    PMID: 28629460 DOI: 10.1186/s12917-017-1109-1
    BACKGROUND: Pasteurella multocida B:2 causes bovine haemorrhagic septicaemia (HS), leading to rapid fatalities in cattle and buffaloes. An attenuated derivative of P. multocida B:2 GDH7, was previously constructed through mutation of the gdhA gene and proved to be an effective live attenuated vaccine for HS. Currently, only two potential live attenuated vaccine candidates for HS are being reported; P. multocida B:2 GDH7 and P. multocida B:2 JRMT12. This study primarily aims to investigate the potential of P. multocida B:2 GDH7 strain as a delivery vehicle for DNA vaccine for future multivalent applications.

    RESULTS: An investigation on the adherence, invasion and intracellular survival of bacterial strains within the bovine aortic endothelial cell line (BAEC) were carried out. The potential vaccine strain, P. multocida B:2 GDH7, was significantly better (p ≤ 0.05) at adhering to and invading BAEC compared to its parent strain and to P. multocida B:2 JRMT12 and survived intracellularly 7 h post treatment, with a steady decline over time. A dual reporter plasmid, pSRGM, which enabled tracking of bacterial movement from the extracellular environment into the intracellular compartment of the mammalian cells, was subsequently transformed into P. multocida B:2 GDH7. Intracellular trafficking of the vaccine strain, P. multocida B:2 GDH7 was subsequently visualized by tracking the reporter proteins via confocal laser scanning microscopy (CLSM).

    CONCLUSIONS: The ability of P. multocida B:2 GDH7 to model bactofection represents a possibility for this vaccine strain to be used as a delivery vehicle for DNA vaccine for future multivalent protection in cattle and buffaloes.

    Matched MeSH terms: Aorta/microbiology
  3. Al-Haddawi MH, Jasni S, Zamri-Saad M, Mutalib AR, Zulkifli I, Son R, et al.
    Vet J, 2000 May;159(3):274-81.
    PMID: 10775473
    In vitro experiments were undertaken to study the adhesion and colonization to tracheal mucosa, lung and aorta explants from freshly killed rabbits of two different strains of Pasteurella multocida. Serotype A:3 (capsulated, fimbriae +, haemagglutination -, dermonecrotic toxin -) isolated from a rabbit with rhinitis, and serotype D:1 (non-capsulated, fimbriae +, haemagglutination +, dermonecrotic toxin +) isolated from a dead rabbit with septicaemia, were used. When the explants were observed under the scanning electron microscope, the type D strain was highly adherent to trachea and aorta explants compared to the type A strain. Adhesion to lung explants was best achieved by the type A strain after 45 min incubation, but after 2 h incubation no significant difference was observed between the strains. Our data indicate that the presence of fimbriae and the absence of capsule seem to enhance the adherence of P. multocida type D strain to tracheal tissue. The capsular material of P. multocida type A strain and the toxin of the type D strain seem to influence the adherence to lung tissue in rabbit. Adhesion of strain D to aorta may indicate the expression of receptors on the endothelium to that strain and may also explain the ability of certain strains to cause septicaemia.
    Matched MeSH terms: Aorta/microbiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links