Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A
    Mediators Inflamm, 2022;2022:2734321.
    PMID: 35177953 DOI: 10.1155/2022/2734321
    Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
    Matched MeSH terms: Adiponectin
  2. Balakumar P, Venkatesan K, Abdulla Khan N, Raghavendra NM, Venugopal V, Bharathi DR, et al.
    Drug Discov Today, 2023 Jul;28(7):103627.
    PMID: 37224995 DOI: 10.1016/j.drudis.2023.103627
    The past couple of decades in particular have seen a rapid increase in the prevalence of type 2 diabetes mellitus (T2DM), a debilitating metabolic disorder characterised by insulin resistance. The insufficient efficacy of current management strategies for insulin resistance calls for additional therapeutic options. The preponderance of evidence suggests potential beneficial effects of curcumin on insulin resistance, while modern science provides a scientific basis for its potential applications against the disease. Curcumin combats insulin resistance by increasing the levels of circulating irisin and adiponectin, activating PPARγ, suppressing Notch1 signalling, and regulating SREBP target genes, among others. In this review, we bring together the diverse areas pertaining to our current understanding of the potential benefits of curcumin on insulin resistance, associated mechanistic insights, and new therapeutic possibilities.
    Matched MeSH terms: Adiponectin
  3. Varkaneh Kord H, M Tinsley G, O Santos H, Zand H, Nazary A, Fatahi S, et al.
    Clin Nutr, 2021 04;40(4):1811-1821.
    PMID: 33158587 DOI: 10.1016/j.clnu.2020.10.034
    BACKGROUND & AIMS: Fasting and energy-restricted diets have been evaluated in several studies as a means of improving cardiometabolic biomarkers related to body fat loss. However, further investigation is required to understand potential alterations of leptin and adiponectin concentrations. Thus, we performed a systematic review and meta-analysis to derive a more precise estimate of the influence of fasting and energy-restricted diets on leptin and adiponectin levels in humans, as well as to detect potential sources of heterogeneity in the available literature.

    METHODS: A comprehensive systematic search was performed in Web of Science, PubMed/MEDLINE, Cochrane, SCOPUS and Embase from inception until June 2019. All clinical trials investigating the effects of fasting and energy-restricted diets on leptin and adiponectin in adults were included.

    RESULTS: Twelve studies containing 17 arms and a total of 495 individuals (intervention = 249, control = 246) reported changes in serum leptin concentrations, and 10 studies containing 12 arms with a total of 438 individuals (intervention = 222, control = 216) reported changes in serum adiponectin concentrations. The combined effect sizes suggested a significant effect of fasting and energy-restricted diets on leptin concentrations (WMD: -3.690 ng/ml, 95% CI: -5.190, -2.190, p ≤ 0.001; I2 = 84.9%). However, no significant effect of fasting and energy-restricted diets on adiponectin concentrations was found (WMD: -159.520 ng/ml, 95% CI: -689.491, 370.451, p = 0.555; I2 = 74.2%). Stratified analyses showed that energy-restricted regimens significantly increased adiponectin (WMD: 554.129 ng/ml, 95% CI: 150.295, 957.964; I2 = 0.0%). In addition, subsequent subgroup analyses revealed that energy restriction, to ≤50% normal required daily energy intake, resulted in significantly reduced concentrations of leptin (WMD: -4.199 ng/ml, 95% CI: -7.279, -1.118; I2 = 83.9%) and significantly increased concentrations of adiponectin (WMD: 524.04 ng/ml, 95% CI: 115.618, 932.469: I2 = 0.0%).

    CONCLUSION: Fasting and energy-restricted diets elicit significant reductions in serum leptin concentrations. Increases in adiponectin may also be observed when energy intake is ≤50% of normal requirements, although limited data preclude definitive conclusions on this point.

    Matched MeSH terms: Adiponectin/blood*
  4. Solayman M, Saleh MA, Paul S, Khalil MI, Gan SH
    Comput Biol Chem, 2017 Jun;68:175-185.
    PMID: 28359874 DOI: 10.1016/j.compbiolchem.2017.03.005
    Polymorphisms of the ADIPOR2 gene are frequently linked to a higher risk of developing diseases including obesity, type 2 diabetes and cardiovascular diseases. Though mutations of the ADIPOR2 gene are detrimental, there is a lack of comprehensive in silico analyses of the functional and structural impacts at the protein level. Considering the involvement of ADIPOR2 in glucose uptake and fatty acid oxidation, an in silico functional analysis was conducted to explore the possible association between genetic mutations and phenotypic variations. A genomic analysis of 82 nonsynonymous SNPs in ADIPOR2 was initiated using SIFT followed by the SNAP2, nsSNPAnalyzer, PolyPhen-2, SNPs&GO, FATHMM and PROVEAN servers. A total of 10 mutations (R126W, L160Q, L195P, F201S, L235R, L235P, L256R, Y328H, E334K and Q349H) were predicted to have deleterious effects on the ADIPOR2 protein and were therefore selected for further analysis. Theoretical models of the variants were generated by comparative modeling via MODELLER 9.16. A protein structural analysis of these amino acid variants was performed using SNPeffect, I-Mutant, ConSurf, Swiss-PDB Viewer and NetSurfP to explore their solvent accessibility, molecular dynamics and energy minimization calculations. In addition, FTSite was used to predict the ligand binding sites, while NetGlycate, NetPhos2.0, UbPerd and SUMOplot were used to predict post-translational modification sites. All of the variants showed increased free energy, though F201S exhibited the highest energy increase. The root mean square deviation values of the modeled mutants strongly indicated likely pathogenicity. Remarkably, three binding sites were detected on ADIPOR2, and two mutations at positions 328 and 201 were found in the first and second binding pockets, respectively. Interestingly, no mutations were found at the post-translational modification sites. These genetic variants can provide a better understanding of the wide range of disease susceptibility associated with ADIPOR2 and aid the development of new molecular diagnostic markers for these diseases. The findings may also facilitate the development of novel therapeutic elements for associated diseases.
    Matched MeSH terms: Receptors, Adiponectin/genetics*
  5. Lai, Sue Yi, Soon, Lean Keng, Nik Mohamed Zaki Nik Mahmood, Naji Mahat
    MyJurnal
    The prevalence of gestational diabetes mellitus (GDM) is increasing worldwide and even in Malaysia. Hence, the knowledge of adiponectin with regards to gestational diabetes mellitus is a key contributor to disparity in maternal and neonatal morbidities. This study aimed to assess nurses' knowledge of adiponectin and its association with gestational diabetes and obesity in pregnancy. A cross-sectional survey was employed. Respondents were selected by purposive sampling using a pre-tested, structured questionnaire. Ninety one nurses (100%) were aware that obesity increased adverse health outcome among pregnant women, but some confusion exits among nurses about adiponectin with regards to pregnancy. Most of the nurses lack condence in providing care to pregnant women with many (82.4%) addressed the need for education on this topic. In the one-way ANOVA analysis, nurses' knowledge score was significantly associated with education level (p<0.001) and working experience in maternity units (p<0.001). This study demonstrates gaps in the knowledge of adiponectin and its association with obesity and pregnancy. Continuous nursing education for nurses on adiponectin and obesity-related issues in early pregnancy should be strengthened to enhance knowledge and confidence in providing quality antenatal services.
    Keywords : Nurses, adiponectin, obesity, pregnancy, gestational diabetes
    Matched MeSH terms: Adiponectin*
  6. Rothan HA, Teh SH, Haron K, Mohamed Z
    Int J Mol Sci, 2012;13(3):3549-62.
    PMID: 22489167 DOI: 10.3390/ijms13033549
    Adiponectin is one of the most bioactive substances secreted by adipose tissue and is involved in the protection against metabolic syndrome, artherosclerosis and type II diabetes. Research into the use of adiponectin as a promising drug for metabolic syndromes requires production of this hormone in high quantities considering its molecular isoforms. The objective of this study is to produce recombinant human adiponectin by Pichia pastoris (P-ADP) as a cheap and convenient eukaryotic expression system for potential application in pharmaceutical therapy. For comparison, adiponectin was also expressed using the Escherichia coli (E-ADP) expression system. Adiponectin was constructed by overlap-extension PCR, and cloned in standard cloning vector and hosts. Recombinant expression vectors were cloned in the P. pastoris and E. coli host strains, respectively. SDS-PAGE and western blotting were used to detect and analyse expressed recombinant protein in both systems. Adiponectin was purified by affinity chromatography and quantified using the Bradford Assay. The results of this study indicated that P-ADP quantity (0.111 mg/mL) was higher than that of E-ADP (0.04 mg/mL) and both were produced in soluble form. However, P-ADP was able to form high molecular weights of adiponectin molecules, whilst E-ADP was not able to form isoforms higher than trimer. In addition, P-ADP was more active in lowering blood glucose compared with E-ADP. The two types of proteins were equally efficient and significantly decreased blood triglyceride and increased high density lipoprotein. We conclude that P. pastoris is able to produce high quantity of bioactive adiponectin for potential use in treatment of metabolic syndromes.
    Matched MeSH terms: Adiponectin/analysis; Adiponectin/biosynthesis*; Adiponectin/genetics*
  7. Hossain MM, Murali MR, Kamarul T
    Life Sci, 2017 Aug 01;182:50-56.
    PMID: 28606849 DOI: 10.1016/j.lfs.2017.06.007
    AIMS: Mesenchymal stem/stromal cells (MSCs) hold promises for the treatment of diverse diseases and regeneration of injured tissues. Genetic modification of MSCs through gene delivery might enhance their therapeutic potential. Adiponectin has been appeared as a potential biomarker for predicting various diseases. Plasma adiponectin levels are negatively correlated with various metabolic and vascular diseases and supplementation of exogenous adiponectin ameliorates the diseases. This study aims to develop adiponectin secreting genetically modified MSCs (GM-MSCs) as a potent strategic tool to complement endogenous adiponectin for the treatment of adiponectin deficiency diseases.

    MAIN METHODS: Human bone marrow derived MSCs were isolated, expanded in vitro and transfected with adiponectin gene containing plasmid vector. Total RNA was extracted and cDNA was prepared by reverse transcription polymerase chain reaction (RT-PCR). The expression of adiponectin gene and protein in GM-MSCs was analyzed by PCR and Western blotting respectively. The secretion of adiponectin protein from GM-MSCs was analyzed by enzyme-linked immunosorbent assay.

    KEY FINDINGS: The expression of adiponectin gene and plasmid DNA was detected in GM-MSCs but not in control group of MSCs. Adiponectin gene expression was detected in GM-MSCs at 2, 7, 14, 21 and 28days after transfection. Western blotting analysis revealed the expression of adiponectin protein only in GM-MSCs. The GM-MSCs stably secreted adiponectin protein into culture media at least for 4weeks.

    SIGNIFICANCE: GM-MSCs express and secret adiponectin protein. Therefore, these adiponectin secreting GM-MSCs could be instrumental for the supplementation of adiponectin in the treatment of adiponectin deficiency related diseases.

    Matched MeSH terms: Adiponectin/genetics*; Adiponectin/secretion
  8. Hossain MM, Mukheem A, Kamarul T
    Life Sci, 2015 Aug 15;135:55-67.
    PMID: 25818192 DOI: 10.1016/j.lfs.2015.03.010
    Hypoadiponectinemia is characterized by low plasma adiponectin levels that can be caused by genetic factors, such as single nucleotide polymorphisms (SNPs) and mutations in the adiponectin gene or by visceral fat deposition/obesity. Reports have suggested that hypoadiponectinemia is associated with dyslipidemia, hypertension, hyperuricemia, metabolic syndrome, atherosclerosis, type 2 diabetes mellitus and various cardiovascular diseases. Previous studies have highlighted several potential strategies to up-regulate adiponectin secretion and function, including visceral fat reduction through diet therapy and exercise, administration of exogenous adiponectin, treatment with peroxisome proliferator-activating receptor gamma (PPARγ) agonists (e.g., thiazolidinediones (TZDs)) and ligands (e.g., bezafibrate and fenofibrate) or the blocking of the renin-angiotensin system. Likewise, the up-regulation of the expression and stimulation of adiponectin receptors by using adiponectin receptor agonists would be an effective method to treat obesity-related conditions. Notably, adiponectin is an abundantly expressed bioactive protein that also exhibits a wide spectrum of biological properties, such as insulin-sensitizing, anti-diabetic, anti-inflammatory and anti-atherosclerotic activities. Although targeting adiponectin and its receptors has been useful for treating diabetes and other metabolic-related diseases in experimental studies, current drug development based on adiponectin/adiponectin receptors for clinical applications is scarce, and there is a lack of available clinical trial data. This comprehensive review discusses the strategies that are presently being pursued to harness the potential of adiponectin up-regulation. In addition, we examined the current status of drug development and its potential for clinical applications.
    Matched MeSH terms: Adiponectin/biosynthesis; Adiponectin/blood; Adiponectin/deficiency*; Adiponectin/genetics; Adiponectin/therapeutic use
  9. Apalasamy YD, Rampal S, Salim A, Moy FM, Bulgiba A, Mohamed Z
    Mol Biol Rep, 2014 May;41(5):2917-21.
    PMID: 24449366 DOI: 10.1007/s11033-014-3147-0
    Studies have shown that single-nucleotide polymorphisms (SNPs) on the ADIPOQ gene have been linked with obesity and with adiponectin levels in various populations. Here, we aimed to investigate the association of ADIPOQ rs17366568 and rs3774261 SNPs with obesity and with adiponectin levels in Malaysian Malays. Obesity parameters and adiponectin levels were measured in 574 subjects. Genotyping was performed using real-time polymerase chain reaction and Sequenom MassARRAY. A significant genotypic association was observed between ADIPOQ rs17366568 and obesity. The frequencies of AG and AA genotypes were significantly higher in the obese group (11%) than in the non-obese group (5%) (P=0.024). The odds of A alleles occurring among the obese group were twice those among the non-obese group (odds ratio 2.15; 95% confidence interval 1.13-4.09). However, no significant association was found between allelic frequencies of ADIPOQ rs17366568 and obesity after Bonferroni correction (P>0.025) or between ADIPOQ rs3774261 and obesity both at allelic and genotypic levels. ADIPOQ SNPs were not significantly associated with log-adiponectin levels. GA, GG, and AG haplotypes of the ADIPOQ gene were not associated with obesity. We confirmed the previously reported association of ADIPOQ rs17366568 with the risk of obesity. ADIPOQ SNPs are not important modulators of adiponectin levels in this population.
    Matched MeSH terms: Adiponectin/blood*; Adiponectin/genetics*
  10. Yap NY, Yap FN, Perumal K, Rajandram R
    Biomarkers, 2019 Sep;24(6):607-614.
    PMID: 31215811 DOI: 10.1080/1354750X.2019.1634763
    Context: Metabolic imbalance in renal cell carcinoma (RCC) can lead to abnormal adiponectin levels. Objective: To evaluate circulating adiponectin as a detection or predictive marker for RCC. Methods: A comprehensive literature search and meta-analysis was performed on studies reporting circulating adiponectin levels and RCC. The meta-analysis was performed using RevMan. Results: Seven studies compared the circulating adiponection levels between RCC cases and controls. Adiponectin level was significantly lower in RCC cases compared to controls at pre-diagnosis and pre-operative time-points. RCC stage, grade and subtype did not affect adiponectin levels. Conclusion: Low circulating adiponectin could be a predictive or risk factor for RCC.
    Matched MeSH terms: Adiponectin/blood; Adiponectin/genetics*
  11. Lau CH, Muniandy S
    Genet Mol Biol, 2012 Jan;35(1):38-44.
    PMID: 22481872
    Epistasis (gene-gene interaction) is a ubiquitous component of the genetic architecture of complex traits such as susceptibility to common human diseases. Given the strong negative correlation between circulating adiponectin and resistin levels, the potential intermolecular epistatic interactions between ADIPOQ (SNP+45T > G, SNP+276G > T, SNP+639T > C and SNP+1212A > G) and RETN (SNP-420C > G and SNP+299G > A) gene polymorphisms in the genetic risk underlying type 2 diabetes (T2DM) and metabolic syndrome (MS) were assessed. The potential mutual influence of the ADIPOQ and RETN genes on their adipokine levels was also examined. The rare homozygous genotype (risk alleles) of SNP-420C > G at the RETN locus tended to be co-inherited together with the common homozygous genotypes (protective alleles) of SNP+639T > C and SNP+1212A > G at the ADIPOQ locus. Despite the close structural relationship between the ADIPOQ and RETN genes, there was no evidence of an intermolecular epistatic interaction between these genes. There was also no reciprocal effect of the ADIPOQ and RETN genes on their adipokine levels, i.e., ADIPOQ did not affect resistin levels nor did RETN affect adiponectin levels. The possible influence of the ADIPOQ gene on RETN expression warrants further investigation.
    Matched MeSH terms: Adiponectin
  12. Nimptsch K, Song M, Aleksandrova K, Katsoulis M, Freisling H, Jenab M, et al.
    Eur J Epidemiol, 2017 May;32(5):419-430.
    PMID: 28550647 DOI: 10.1007/s10654-017-0262-y
    Higher levels of circulating adiponectin have been related to lower risk of colorectal cancer in several prospective cohort studies, but it remains unclear whether this association may be causal. We aimed to improve causal inference in a Mendelian Randomization meta-analysis using nested case-control studies of the European Prospective Investigation into Cancer and Nutrition (EPIC, 623 cases, 623 matched controls), the Health Professionals Follow-up Study (HPFS, 231 cases, 230 controls) and the Nurses' Health Study (NHS, 399 cases, 774 controls) with available data on pre-diagnostic adiponectin concentrations and selected single nucleotide polymorphisms in the ADIPOQ gene. We created an ADIPOQ allele score that explained approximately 3% of the interindividual variation in adiponectin concentrations. The ADIPOQ allele score was not associated with risk of colorectal cancer in logistic regression analyses (pooled OR per score-unit unit 0.97, 95% CI 0.91, 1.04). Genetically determined twofold higher adiponectin was not significantly associated with risk of colorectal cancer using the ADIPOQ allele score as instrumental variable (pooled OR 0.73, 95% CI 0.40, 1.34). In a summary instrumental variable analysis (based on previously published data) with higher statistical power, no association between genetically determined twofold higher adiponectin and risk of colorectal cancer was observed (0.99, 95% CI 0.93, 1.06 in women and 0.94, 95% CI 0.88, 1.01 in men). Thus, our study does not support a causal effect of circulating adiponectin on colorectal cancer risk. Due to the limited genetic determination of adiponectin, larger Mendelian Randomization studies are necessary to clarify whether adiponectin is causally related to lower risk of colorectal cancer.
    Matched MeSH terms: Adiponectin/blood*; Adiponectin/genetics; Adiponectin/metabolism
  13. Nurnazahiah A, Lua PL, Shahril MR
    Malays J Med Sci, 2016 Nov;23(6):7-24.
    PMID: 28090175 MyJurnal DOI: 10.21315/mjms2016.23.6.2
    The objective of this study was to compile and analyse existing scientific evidences reporting the effects of objectively measured physical activity on the levels of adiponectin and leptin. Articles related to the effects of objectively measured physical activity on the levels of adiponectin and leptin were searched from the Medline and PubMed databases. The search was limited to 'objectively measured' physical activity, and studies that did not objectively measure the physical activity were excluded. Only English articles were included in the search and review. A total of 18 articles encompassing 2,026 respondents met the inclusion criteria. The eligible articles included all forms of evidence (e.g., cross-sectional and intervention). Seventeen and 11 studies showed the effects of objectively measured physical activity on adiponectin and leptin, respectively. Five and four cross-sectional studies showed the effects of objectively measured physical activity on adiponectin and leptin, respectively. Two out of five studies showed a weak to moderate positive association between adiponectin and objectively measured physical activity, while three out of four studies showed a weak to moderate inverse association between leptin and objectively measured physical activity. For intervention studies, six out of 12 studies involving adiponectin and five out of seven studies involving leptin showed a significant effect between the proteins and objectively measured physical activity. However, a definitive conclusion could not be drawn due to several methodological flaws in the existing articles and the acute lack of additional research in this area. In conclusion, the existing evidences are encouraging but yet not compelling. Hence, further well-designed large trials are needed before the effectiveness of objectively measured physical activity in elevating adiponectin levels and in decreasing leptin levels could be strongly confirmed.
    Matched MeSH terms: Adiponectin
  14. Lau CH, Muniandy S
    Ann. Hum. Genet., 2011 May;75(3):370-82.
    PMID: 21323646 DOI: 10.1111/j.1469-1809.2010.00635.x
    Single nucleotide polymorphisms (SNPs) at the adiponectin and resistin loci are strongly associated with hypoadiponectinemia and hyperresistinemia, which may eventually increase risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS), and cardiovascular disease. Real-time PCR was used to genotype SNPs of the adiponectin (SNP+45T>G, SNP+276G>T, SNP+639T>C, and SNP+1212A>G) and resistin (SNP-420C>G and SNP+299G>A) genes in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40 and 70 years old. The genotyping results for each SNP marker was verified by sequencing. The anthropometric clinical and metabolic parameters of subjects were recorded. None of these SNPs at the adiponectin and resistin loci were associated with T2DM and MS susceptibility in Malaysian men. SNP+45T>G, SNP+276G>T, and SNP+639T>C of the adiponectin gene did not influence circulating levels of adiponectin. However, the G-allele of SNP+1212A>G at the adiponectin locus was marginally associated (P= 0.0227) with reduced circulating adiponectin levels. SNP-420C>G (df = 2; F= 16.026; P= 1.50×10(-7) ) and SNP+299G>A (df = 2; F= 22.944; P= 2.04×10(-10) ) of the resistin gene were strongly associated with serum resistin levels. Thus, SNP-420C>G and SNP+299G>A of the resistin gene are strongly associated with the risk of hyperresistinemia in Malaysian men.
    Matched MeSH terms: Adiponectin/genetics*
  15. Al-Tahami BA, Bee YT, Ismail AA, Rasool AH
    Clin. Hemorheol. Microcirc., 2011;47(2):87-97.
    PMID: 21339629 DOI: 10.3233/CH-2010-1370
    INTRODUCTION: This study aims to assess microvascular endothelial function in obese compared to age matched lean controls. Serum lipid profile, fasting glucose, high sensitivity C-reactive protein (hs-CRP) and adiponectin levels were also determined.
    METHODS: This cross-sectional study involved 36 healthy lean and 36 obese subjects. Microvascular endothelial function was assessed using Laser Doppler fluximetry and iontophoresis with acetylcholine and sodium nitroprusside.
    RESULTS: Mean age of subjects was 26.54 ± 0.60 years. Obese subjects had higher systolic (118.8 ± 1.5 vs 105.7 ± 2.0 mmHg, p < 0.001) and diastolic blood pressure (71.61 ± 1.35 vs 64.53 ± 1.40 mmHg, p = 0.001), higher triglyceride (1.35 ± 0.13 vs 0.79 ± 0.05 mmol/l, p < 0.001), lower high density lipoprotein cholesterol (HDL-C) (1.43 ± 0.04 vs 1.62 ± 0.05 mmol/l, p = 0.003), higher hs-CRP (11.58 ± 1.88 vs 1.88 ± 0.35 mg/l, p < 0.001), and lower adiponectin levels (8.80 ± 0.43 vs 25.93 ± 0.40 μg/ml, p < 0.001) compared to lean subjects. Endothelial dependent vasodilatation was lower in obese compared to lean subjects (40.53 ± 6.59 vs 71.03 ± 7.13 AU, p = 0.001).
    CONCLUSION: Microvascular endothelial function is reduced in obese compared to age matched controls. This is associated with higher BP, triglyceride and lower HDL-C and adiponectin levels in obese group.
    Study site: not mentioned
    Matched MeSH terms: Adiponectin/blood
  16. Afzal S, Abdul Sattar M, Johns EJ, Eseyin OA
    PLoS One, 2020;15(11):e0229803.
    PMID: 33170841 DOI: 10.1371/journal.pone.0229803
    Pioglitazone, a therapeutic drug for diabetes, possesses full PPAR-γ agonist activity and increase circulating adiponectin plasma concentration. Plasma adiponectin concentration decreases in hypertensive patients with renal dysfunctions. Present study investigated the reno-protective, altered excretory functions and renal haemodynamic responses to adrenergic agonists and ANG II following separate and combined therapy with pioglitazone in diabetic model of hypertensive rats. Pioglitazone was given orally [10mg/kg/day] for 28 days and adiponectin intraperitoneally [2.5μg/kg/day] for last 7 days. Groups of SHR received either pioglitazone or adiponectin in combination. A group of Wistar Kyoto rats [WKY] served as normotensive controls, whereas streptozotocin administered SHRs served as diabetic hypertensive rats. Metabolic data and plasma samples were taken on day 0, 8, 21 and 28. In acute studies, the renal vasoconstrictor actions of Angiotensin II [ANGII], noradrenaline [NA], phenylephrine [PE] and methoxamine [ME] were determined. Diabetic SHRs control had a higher basal mean arterial blood pressure than the WKY, lower RCBP and plasma adiponectin, higher creatinine clearance and urinary sodium excretion compared to WKY [all P<0.05] which were normalized by the individual drug treatments and to greater degree following combined treatment. Responses to intra-renal administration of NA, PE, ME and ANGII were larger in diabetic SHR than WKY and SHRs [P<0.05]. Adiponectin significantly blunted responses to NA, PE, ME and ANG II in diabetic treated SHRs by 40%, whereas the pioglitazone combined therapy with adiponectin further attenuated the responses to adrenergic agonists by 65%. [all P <0.05]. These findings suggest that adiponectin possesses renoprotective effects and improves renal haemodynamics through adiponectin receptors and PPAR-γ in diabetic SHRs, suggesting that synergism exists between adiponectin and pioglitazone. A cross-talk relationship also supposed to exists between adiponectin receptors, PPAR-γ and alpha adrenoceptors in renal vasculature of diabetic SHRs.
    Matched MeSH terms: Adiponectin; Receptors, Adiponectin
  17. Shahril MR, Zakarai NS, Appannah G, Nurnazahiah A, Mohamed HJJ, Ahmad A, et al.
    Nutrients, 2021 Sep 24;13(10).
    PMID: 34684340 DOI: 10.3390/nu13103339
    Dietary pattern (DP) and its relationship with disease biomarkers have received recognition in nutritional epidemiology investigations. However, DP relationships with adipokines (i.e., adiponectin and leptin) among breast cancer survivors remain unclear. Therefore, we assessed relationships between DP and high-molecular weight (HMW) adiponectin and leptin concentration among breast cancer survivors. This cross-sectional study involved 128 breast cancer survivors who attended the oncology outpatient clinic at two main government hospitals in the East Coast of Peninsular Malaysia. The serum concentration of HMW adiponectin and leptin were measured using enzyme-linked immunosorbent assay (ELISA) kits. A reduced rank regression method was used to analyze DP. Relationships between DP with HMW adiponectin and leptin were examined using regression models. The findings show that with every 1-unit increase in the 'energy-dense, high-SFA, low-fiber' DP z-score, there was a reduction by 0.41 μg/mL in HMW adiponectin which was independent of age, BMI, education level, occupation status, cancer stage, and duration since diagnosis. A similar relationship with leptin concentration was not observed. In conclusion, the 'energy-dense, high-saturated fat and low-fiber' DP, which is characterized by high intake levels of sugar-sweetened drinks and fat-based spreads but low intake of fruits and vegetables, is an unhealthy dietary pattern and unfavorable for HMW adiponectin concentration, but not for leptin. These findings could serve as a basis in developing specific preventive strategies that are tailored to the growing population of breast cancer survivors.
    Matched MeSH terms: Adiponectin/blood*
  18. Afzal S, Sattar MA, Eseyin OA, Attiq A, Johns EJ
    Eur J Pharmacol, 2022 Feb 15;917:174703.
    PMID: 34973951 DOI: 10.1016/j.ejphar.2021.174703
    Hypoadiponectinemia is associated with renal dysfunctions. Irbesartan and pioglitazone activate Peroxisome proliferator-activated gamma receptor (PPAR-γ) as partial and full agonists. We investigated a crosstalk interaction and synergistic action between adiponectin receptors, PPAR-γ agonists in attenuating renal hemodynamics to adrenergic agonists in diabetic Wistar Kyoto rats (WKY). Streptozotocin (40 mg/kg) was used to induce diabetes, whereas, pioglitazone (10 mg/kg/day), irbesartan (30 mg/kg/day) administered orally for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Metabolic and plasma samples were analyzed on days 0, 8, 21, and 28. During the acute study (day 29), renal vasoconstrictor actions to adrenergic agonists and angiotensin-II were determined. Diabetic WKYs had lower plasma adiponectin, higher creatinine clearance, urinary and fractional sodium excretion but were normalized to a greater extent in pioglitazone and adiponectin combined treatment. Responses to intra-renal administration of adrenergic agonists including noradrenaline (NA), phenylephrine (PE), methoxamine (ME), and angiotensin-II (ANG-II) were larger in diabetic WKY, but significantly blunted with adiponectin treatment in diabetic WKYs to 35-40%, and further reduced by 65-70% in combination with pioglitazone. Attenuation to ANG-II responses in adiponectin and combination with irbesartan was 30-35% and 75-80%, respectively (P adiponectin receptors (adipo R1 & R2), alpha adrenoceptors, and angiotensin-I (ATI) receptors in the renal vasculature of diabetic WKYs. Exogenously administered adiponectin with full PPAR-γ agonist substantially attenuated renal hemodynamics and improved excretory functions, signifying their renoprotective action. Additionally, a degree of synergism exists between adiponectin and pioglitazone to a large extent compared to combination therapy with irbesartan (partial PPAR-γ agonist) in attenuating the renal vascular receptiveness to adrenergic agonists.
    Matched MeSH terms: Adiponectin/metabolism
  19. Beh JE, Khoo LT, Latip J, Abdullah MP, Alitheen NB, Adam Z, et al.
    J Ethnopharmacol, 2013 Oct 28;150(1):339-52.
    PMID: 24029250 DOI: 10.1016/j.jep.2013.09.001
    Adipocytes are major tissues involved in glucose uptake second to skeletal muscle and act as the main adipocytokines mediator that regulates glucose uptake mechanism and cellular differentiation. The objective of this study were to examine the effect of the SDF7, which is a fraction consists of four flavonoid compounds (quercetin: p-coumaric acid: luteolin: apigenin=8: 26: 1: 3) from Scoparia dulcis Linn., on stimulating the downstream components of insulin signalling and the adipocytokines expression on different cellular fractions of 3T3-F442a adipocytes.
    Matched MeSH terms: Adiponectin/genetics; Adiponectin/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links