Displaying all 2 publications

Abstract:
Sort:
  1. Lakhundi S, Siddiqui R, Khan NA
    Microb Pathog, 2017 Mar;104:97-109.
    PMID: 27998732 DOI: 10.1016/j.micpath.2016.12.013
    Microbial keratitis is a sight-threatening ocular infection caused by bacteria, fungi, and protist pathogens. Epithelial defects and injuries are key predisposing factors making the eye susceptible to corneal pathogens. Among bacterial pathogens, the most common agents responsible for keratitis include Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumonia and Serratia species. Fungal agents of corneal infections include both filamentous as well as yeast, including Fusarium, Aspergillus, Phaeohyphomycetes, Curvularia, Paecilomyces, Scedosporium and Candida species, while in protists, Acanthamoeba spp. are responsible for causing ocular disease. Clinical features include redness, pain, tearing, blur vision and inflammation but symptoms vary depending on the causative agent. The underlying molecular mechanisms associated with microbial pathogenesis include virulence factors as well as the host factors that aid in the progression of keratitis, resulting in damage to the ocular tissue. The treatment therefore should focus not only on the elimination of the culprit but also on the neutralization of virulence factors to minimize the damage, in addition to repairing the damaged tissue. A complete understanding of the pathogenesis of microbial keratitis will lead to the rational development of therapeutic interventions. This is a timely review of our current understanding of the advances made in this field in a comprehensible manner. Coupled with the recently available genome sequence information and high throughput genomics technology, and the availability of innovative approaches, this will stimulate interest in this field.
    Matched MeSH terms: Acanthamoeba/physiology
  2. Anwar A, Khan NA, Siddiqui R
    Parasit Vectors, 2018 01 09;11(1):26.
    PMID: 29316961 DOI: 10.1186/s13071-017-2572-z
    Acanthamoeba spp. are protist pathogens and causative agents of serious infections including keratitis and granulomatous amoebic encephalitis. Its ability to convert into dormant and highly resistant cysts form limits effectiveness of available therapeutic agents and presents a pivotal challenge for drug development. During the cyst stage, Acanthamoeba is protected by the presence of hardy cyst walls, comprised primarily of carbohydrates and cyst-specific proteins, hence synthesis inhibition and/or degradation of cyst walls is of major interest. This review focuses on targeting of Acanthamoeba cysts by identifying viable therapeutic targets.
    Matched MeSH terms: Acanthamoeba/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links