Strength and morphological adaptations to resistance exercise are mediated in part by anabolic hormones such as testosterone, yet the time course of variability in circadian hormone concentrations is not well characterized. This study, investigated how the circadian rhythm of salivary testosterone is altered by resistance exercise in young men. Twenty healthy young male recreational lifters (age, 18.0 ± 1.3 years) with 2 years of experience in weightlifting were recruited. A randomized controlled trial was conducted, and subjects were randomly assigned to either the resistance exercise group (n = 10), who completed a series of resistance exercise (3 times a week, in the afternoon, 6-7 repetitions, at 85% of 1 repetition maximum for 3 weeks), or a control group (n = 10), who did not exercise during the 3 weeks. Before and after the study, an unstimulated saliva sample (2 ml) was taken every 2 hours for a maximum of 16 hours during each day. A significant decrease was observed in the resistance exercise (44.2%, p = 0.001) and control group (46.1%, p = 0.001) for salivary testosterone at each time point compared with baseline (p = 0.001). There was also no significant difference between the exercise and resting conditions in both groups for salivary testosterone (p > 0.05), except a significantly higher increase by 38.4% vs. -0.02% (p = 0.001), at 1730 hours during exercise sessions in the resistance exercise group compared with the control group. Resistance exercise has no noteworthy effect on circadian secretion of salivary testosterone throughout the 16 waking hours. These results indicate that athletes can undertake resistance exercise in either the morning or afternoon with the knowledge that a similar testosterone response can be expected regardless of the time of day.
Previous investigators have speculated that applying additional external load throughout the eccentric phase of the jumping movement could amplify the stretch-shortening cycle mechanism and modulate jumping performance and jump exercise intensity. The aims of this study, therefore, were to determine the effect of increased eccentric phase loading, as delivered using an elastic device, on drop jumps (DJs) performed from different drop heights. Of specific interest were changes in (a) the kinetics; eccentric and concentric impulse, rate of force development (RFD), concentric velocity and (b) the electromyographic (EMG) activity of leg muscles. In a randomized repeated-measure study, 15 highly resistance trained male subjects performed DJs from 3 heights (20, 35, and 50 cm) under 3 different conditions: body weight only (free DJ) and with elastic bands providing downward force equivalent to 20% (+20% DJ) and 30% (+30% DJ) of body mass. All DJs were recorded using video and force plate data that were synchronized with EMG data. Results demonstrated that using additional tensile load during the airborne and eccentric phases of the DJ could enhance eccentric impulse (p = 0.042) and RFD (p < 0.001) and resulted in small to moderate effect size (ES) increases in quadriceps intergrated EMG across the eccentric phase (0.23 > ES > 0.51). The observed greater eccentric loading, however, did not immediately alter concentric kinetics and jump height nor did it alter muscle activation levels during this phase. The findings indicated that, in addition to the conventional technique of increasing drop height, using a tensile load during the airborne and eccentric phases of the DJ could further improve eccentric loading of DJs. As it has been suggested that eccentric impulse and RFD are indicators of DJ exercise intensity, these findings suggest that the loaded DJs, using additional elastic load, may be an effective technique for improving DJ exercise intensity without acute effects on the jumping performance and neuromuscular activation level in highly trained athletes.
The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.
This study investigated the number of trials necessary to obtain optimal biomechanical responses in 10 consecutive soccer instep kicks. The kicking motions of dominant legs were captured from 5 experienced and skilled adult male soccer players (height: 184.60 ± 4.49 cm; mass: 80 ± 4.24 kg; and age: 25.60 ± 1.14 years) using a 3D infrared high-speed camera at 200 Hz. Some of the important kinematics and kinetics parameters are maximum thigh angular velocity, maximum lower leg angular velocity, maximum of thigh moment, maximum lower leg moment at forward and impact phases, and finally maximum ball velocity after impact selected to be analyzed. There was a significant decrease of ball velocity between the first and the fifth kick and the subsequent kicks. Similarly, the lower leg angular velocity showed a significant decrease after the fifth kick and thereafter. Compared with the first kick, the thigh angular velocity has been shown to decrease after the sixth kick and thereafter, and the thigh moment result of the sixth kick was significantly lower when compared with the first kick. Moreover, the lower leg moment result of the fourth kick was significantly lower in comparison with the first kick. In conclusion, it seems that 5 consecutive kicks are adequate to achieve high kinematics and kinetics responses and selecting more than 5 kicks does not result in any high biomechanical responses for analysis.
The purpose of this study was to examine the effects of static, dynamic, and the combination of static and dynamic stretching within a pre-exercise warm-up on the Illinois agility test (IAT) in soccer players. Nineteen professional soccer players (age = 22.5 ± 2.5 years, height = 1.79 ± 0.003 m, body mass = 74.8 ± 10.9 kg) were tested for agility performance using the IAT after different warm-up protocols consisting of static, dynamic, combined stretching, and no stretching. The players were subgrouped into less and more experienced players (5.12 ± 0.83 and 8.18 ± 1.16 years, respectively). There were significant decreases in agility time after no stretching, among no stretching vs. static stretching; after dynamic stretching, among static vs. dynamic stretching; and after dynamic stretching, among dynamic vs. combined stretching during warm-ups for the agility: mean ± SD data were 14.18 ± 0.66 seconds (no stretch), 14.90 ± 0.38 seconds (static), 13.95 ± 0.32 seconds (dynamic), and 14.50 ± 0.35 seconds (combined). There was significant difference between less and more experienced players after no stretching and dynamic stretching. There was significant decrease in agility time following dynamic stretching vs. static stretching in both less and more experienced players. Static stretching does not appear to be detrimental to agility performance when combined with dynamic warm-up for professional soccer players. However, dynamic stretching during the warm-up was most effective as preparation for agility performance. The data from this study suggest that more experienced players demonstrate better agility skills due to years of training and playing soccer.
Atan, SA, Foskett, A, and Ali, A. Motion analysis of match play in New Zealand U13 to U15 age-group soccer players. J Strength Cond Res 30(9): 2416-2423, 2016-The purpose of this study was to investigate motion analysis in 85 players (U13-U15 years) from Auckland's Metropolitan League during 2 competitive soccer matches. Five-Hz global positioning system (with interpolated 10-Hz output) units were used to measure total distance (absolute and relative) and time spent in standing, walking, low-intensity running, medium-intensity running, high-intensity running, and sprinting. Speed thresholds for each match activity were determined through mean 10-m flying sprint peak speed for each age group. Under 15 years (U15, 6600 ± 1480 m) covered more absolute distance because of longer playing time than under 14 years (U14, 5385 ± 1296 m, p = 0.001) and under 13 years (U13, 4516 ± 702.6 m, p = 0.001). However, there were no differences in relative distances covered (U15, 94.5 ± 11.2 m·min, U14, 96.1 ± 11.9 m·min, U15, 97.3 ± 17.6 m·min, p = 0.685). Maximum speed attained during the match was faster for U15 (26.5 ± 1.68 km·h) than U14 (25.4 ± 1.93 km·h, p = 0.022) and U13 (23.5 ± 1.74 km·h, p = 0.001); there were no differences in average distance per sprint, with all age groups covering ∼16 m per sprint (p = 0.603). The current findings provide useful information for developing specific training programs for young soccer players and a framework for developing age-specific soccer simulation protocols.
Bin Naharudin, MN, Yusof, A, Shaw, H, Stockton, M, Clayton, DJ, and James, LJ. Breakfast omission reduces subsequent resistance exercise performance. J Strength Cond Res 33(7): 1766-1772, 2019-Although much research has examined the influence of morning carbohydrate intake (i.e., breakfast) on endurance performance, little is known about its effects on performance in resistance-type exercise. Sixteen resistance-trained men (age 23 ± 4 years, body mass 77.56 ± 7.13 kg, and height 1.75 ± 0.04 m) who regularly (≥3 day/wk) consumed breakfast completed this study. After assessment of 10 repetition maximum (10RM) and familiarization process, subjects completed 2 randomized trials. After an overnight fast, subjects consumed either a typical breakfast meal (containing 1.5 g of carbohydrate/kg; breakfast consumption [BC]) or a water-only breakfast (breakfast omission [BO]). Two hours later, subjects performed 4 sets to failure of back squat and bench press at 90% of their 10RM. Sensations of hunger, fullness, desire to eat, and prospective food consumption were collected before, as well as immediately, 1 hour and 2 hours after BC/BO using 100-mm visual analogue scales. Total repetitions completed were lower during BO for both back squat (BO: 58 ± 11 repetitions; BC: 68 ± 14 repetitions; effect size [ES] = 0.98; p < 0.001) and bench press (BO: 38 ± 5 repetitions; BC: 40 ± 5 repetitions; ES = 1.06; p < 0.001). Fullness was greater, whereas hunger, desire to eat, and prospective food consumption were lower after a meal for BC compared with BO (p < 0.001). The results of this study demonstrate that omission of a pre-exercise breakfast might impair resistance exercise performance in habitual breakfast consumers. Therefore, consumption of a high-carbohydrate meal before resistance exercise might be a prudent strategy to help maximize performance.
James, CA, Richardson, AJ, Watt, PW, Willmott, AGB, Gibson, OR, and Maxwell, NS. Short-term heat acclimation and precooling, independently and combined, improve 5-km time trial performance in the heat. J Strength Cond Res 32(5): 1366-1375, 2018-Following heat acclimation (HA), endurance running performance remains impaired in hot vs. temperate conditions. Combining HA with precooling (PC) demonstrates no additive benefit in intermittent sprint, or continuous cycling exercise protocols, during which heat strain may be less severe compared to endurance running. This study investigated the effect of short-term HA (STHA) combined with mixed methods PC, on endurance running performance and directly compared PC and HA. Nine amateur trained runners completed 5-km treadmill time trials (TTs) in the heat (32° C, 60% relative humidity) under 4 conditions; no intervention (CON), PC, short-term HA (5 days-HA) and STHA with PC (HA + PC). Mean (±SD) performance times were; CON 1,476 (173) seconds, PC 1,421 (146) seconds, HA 1,378 (116) seconds and HA + PC 1,373 (121) seconds. This equated to the following improvements versus CON; PC -3.7%, HA -6.6% and HA + PC -7.0%. Statistical differences were only observed between HA and CON (p = 0.004, d = 0.68, 95% CI [-0.27 to 1.63]) however, similar effect sizes were observed for HA + PC vs. CON (d = 0.70, 95% CI [-0.25 to 1.65]), with smaller effects between PC vs. CON (d = 0.34, 95% CI [-0.59 to 1.27]), HA vs. PC (d = 0.33, 95% CI [-0.60 to 1.26]) and HA + PC vs. PC (d = 0.36, 95% CI [-0.57 to 1.29]). Pilot testing revealed a TT typical error of 16 seconds (1.2%). Precooling offered no further benefit to performance in the acclimated individual, despite modest alleviation of physiological strain. Maintenance of running speed in HA + PC, despite reduced physiological strain, may indicate an inappropriate pacing strategy therefore, further familiarization is recommended to optimize a combined strategy. Finally, these data indicate HA, achieved through cycle training, yields a larger ergogenic effect than PC on 5-km running performance in the heat, although PC remains beneficial when HA is not possible.
Bustos, A, Metral, G, Cronin, J, Uthoff, A, and Dolcetti, J. Effects of warming up with lower-body wearable resistance on physical performance measures in soccer players over an 8-week training cycle. J Strength Cond Res 34(5): 1220-1226, 2020-Warm-ups provide an opportune time to integrate specific movements to improve performance. This study aimed to examine the effects of adding wearable resistance (WR) lower-limb loading to a warm-up on physical performance measures in soccer athletes. Thirty-one national-level soccer players (aged 16-18 years) were matched for speed and allocated to either a WR training (WRT = 15) or an unloaded (CON = 16) group. Both groups performed the same warm-up 2-3x·wk for 8 weeks with the WRT group wearing 200- to 600-g loads on their calves. Pre-training, mid-training, and post-training data were collected for 10- and 20-m sprint times, repeated sprint ability, and vertical countermovement jump (CMJ) and horizontal countermovement jump (standing long jump [SLJ]) performance. Wearable resistance training improved pre-training to post-training 10- and 20-m sprint times more than the unloaded training (effect size [ES] = -1.06 to -0.96, respectively; 60.0-66.7 vs. 18.8-37.5% > smallest worthwhile change [SWC]). Both groups decreased CMJ over the first 4 weeks (ES ≥ 0.45) and increased CMJ performance over the second 4 weeks of training (ES ≥ 0.27). Both the WRT and CON groups improved SLJ performance after the 8-week training block (ES = 0.85 and 0.93, respectively; 86.7 and 62.5% > SWC, respectively), yet no differences were identified between groups. These findings indicate that 8 weeks (23 sessions) of WR training appears to elicit practically meaningful improvements in accelerated sprinting and horizontal jumping performance. Strength and conditioning practitioners should consider including WR in sports where sprinting and horizontal force production are critical performance indicators.
James, C, Tenllado Vallejo, F, Kantebeen, M, and Farra, S. Validity and reliability of an on-court fitness test for assessing and monitoring aerobic fitness in squash. J Strength Cond Res 33(5): 1400-1407, 2019-Current on-court assessments of aerobic fitness in squash are not designed to yield a wealth of physiological data. Moreover, tests may require complex computer equipment or involve simulated racket strokes, which are difficult to standardize at high intensities. This study investigated the validity and reliability of a squash-specific fitness test which can yield both a standalone performance score, as well as pertinent physiological markers such as V[Combining Dot Above]O2max, the lactate turnpoint and oxygen cost, in a sport-specific environment. Eight national squash players completed 3 tests in a counterbalanced order: an incremental laboratory treadmill test (LAB) and 2 on-court fitness tests (STs) that involved repeated shuttle runs at increasing speeds. V[Combining Dot Above]O2max during ST was agreeable with LAB (typical error [TE] = 3.3 ml·kg·min, r = 0.79). The mean bias between LAB and ST was 2.5 ml·kg·min. There were no differences in maximum heart rate, postexercise blood lactate concentration, or end of test rating of perceived exertion between LAB and ST (p > 0.05). The ST was highly reliable, with 74 (10) laps completed in ST1 and 75 (12) laps in ST2 (mean bias = 1 lap, TE = 3 laps, r = 0.97). Physiological markers were also reliable, including V[Combining Dot Above]O2max, (TE = 1.5 ml·kg·min, r = 0.95), the lap number at 4 mMol (TE = 4 laps, r = 0.77), and average V[Combining Dot Above]O2 across the first 4 stages (TE = 0.94 ml·kg·min, r = 0.95). We observed good agreement between LAB and ST for assessing V[Combining Dot Above]O2max and between both on-court trials for assessing test performance and selected physiological markers. Consequently, we recommend this test for monitoring training adaptations and prescribing individualized training in elite squash players.
Erik, HT, Onn, SW, and Montalvo, S. Vertical jump height with artificial intelligence through a cell phone: a validity and reliability report. J Strength Cond Res 38(9): e529-e533, 2024-This study estimated the reliability and validity of an artificial intelligence (AI)-driven model in the My Jump 2 (My Jump Lab ) for estimating vertical jump height compared with the Force Platform (FP). The cross-sectional study involved 88 athletes (33 female and 55 male athletes), performing a total of 264 countermovement jumps with hands on hips. "Jump heights were simultaneously measured using the FP and the My Jump 2 app." The FP estimated jump heights using the impulse-momentum method, whereas My Jump 2 used the flight-time method, with the latter using an AI feature for automated detection of jump take-off and landing. Results indicated high reliability for the AI model (intraclass correlation coefficient [ICC 1,3 ] = 0.980, coefficient of variation [CV] = 4.12) and FP (ICC 1,3 = 0.990, CV = 2.92). Validity assessment showed strong agreement between the AI model and FP (ICC 2,k = 0.973). This was also supported by the Bland-Altman analysis, and the ordinary least products regression revealed no significant systematic or proportional bias. The AI-driven model in My Jump 2 is highly reliable and valid for estimating jump height. Strength and conditioning professionals may use the AI-based mobile app for accurate jump height measurements, offering a practical and efficient alternative to traditional methods.
Akbar, S, Kim Geok, S, Bashir, M, Jazaily Bin Mohd, NN, Luo, S, and He, S. Effects of different exercise training on physical fitness and technical skills in handball players. A systematic review. J Strength Cond Res XX(X): 000-000, 2024-This review aimed to assess the effects of exercise training on handball players' performance. A thorough search was conducted in 5 online databases (ProQuest, PubMed, Science Direct, Web of Science, and EBSCOhost (SPORTDiscus), as well as on Google Scholar and other gray literature references starting on April 11, 2022. The methodological quality of the included research was evaluated using the Physiotherapy Evidence Database scale. This systematic review includes 16 studies. Eight studies received "excellent" ratings (≥6 points), 5 received "good" ratings (5 points), and 3 received "moderate" ratings (4 points). The findings showed that the most frequently examined performance factors in exercise training intervention strategies with handball players were balance (n = 5), agility (n = 8), speed (n = 9), and jumping performance (n = 10). Muscular strength (n = 4), shooting and dribbling skill (n = 3), and muscular endurance (n = 4) were the second most frequently investigated performance factors. Regarding speed and agility, exercise training considerably improved the physical fitness of handball players. However, evidence related to muscular strength, shooting ability, and dribbling skills was limited. To achieve the optimum standard, handball players must have strong physical and physiological qualities. Meanwhile, no evidence was found related to the impacts of exercise training on power, endurance, flexibility, body composition, cardiovascular fitness, and cardiorespiratory fitness. Regarding limitations, there is a need for more research with solid evidence to determine the impacts of exercise training interventions on athletes' performance in handball.