Displaying all 17 publications

Abstract:
Sort:
  1. Sim SF, Lee TZ, Mohd Irwan Lu NA, Samling B
    J Anal Methods Chem, 2014;2014:271970.
    PMID: 24563804 DOI: 10.1155/2014/271970
    Fourier Transform Infrared (FTIR) and Gas Chromatography Mass Spectrometry (GCMS) are two common instruments used for analysis of edible oils. The output signal is often analysed on the software attached to the workstations. The processing software is usually individualised for a specific source. The output of GCMS cannot be analysed on the FTIR hence analysts often need to juggle between instruments when multiple techniques are employed. This could become exhaustive when a large dataset is involved. This paper reports a synchronised approach for analysis of signal from FTIR and GCMS. The algorithm is demonstrated on a dataset of edible oils to investigate the thermal degradation of seven types of edible oils treated at 100°C and 150°C. The synchronised routines identify peaks present in FTIR and GCMS spectra/chromatograms where the information is subsequently extracted onto peak tables for further analysis. In this study, it is found that palm based products and corn oils were relatively more stable with higher content of antioxidants tocopherols and squalene. As a conclusion, this approach allows simultaneous analysis of signal from multiple sources and samples enhancing the efficiency of the signal processing process.
  2. Li X, Wang X, Song T, Lu W, Chen Z, Shi X
    J Anal Methods Chem, 2015;2015:675827.
    PMID: 26491602 DOI: 10.1155/2015/675827
    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement.
  3. Li P, Lei Y, Li Q, Lakshmipriya T, Gopinath SCB, Gong X
    J Anal Methods Chem, 2019;2019:6097375.
    PMID: 31534814 DOI: 10.1155/2019/6097375
    Every year, over 200 million adults are undergoing noncardiac surgery. These noncardiac surgery patients may face the risk of cardiac mortality and morbidity during the perioperative and recovery periods. Around ten million patients who underwent noncardiac surgery experience cardiac complications within the first 30 days of the postoperative period; the complications are myocardial infarction, cardiac death, and cardiac arrest. This cardiovascular risk is mostly faced by the patients having cerebrovascular or cardiac disease and the patients with the age greater than 50 years. Monitoring and treating cardiac diseases with a suitable biomarker during the perioperative period is necessary for the early recovery of noncardiac surgery patients. This review discussed the risk factors and the key guidelines to avoid the cardiovascular risks during the perioperative period of noncardiac surgery patients. In addition, the biomarkers and identification strategies for cardiac diseases are discussed.
  4. Chang W, Zhao J, Liu L, Xing X, Zhang C, Meng H, et al.
    J Anal Methods Chem, 2021;2021:6661799.
    PMID: 33688447 DOI: 10.1155/2021/6661799
    Nanotechnology is playing a major role in the field of medical diagnosis, in particular with the biosensor and bioimaging. It improves the performance of the desired system dramatically by displaying higher selectivity and sensitivity. Carbon nanomaterial, gold nanostructure, magnetite nanoparticle, and silica substrate are the most popular nanomaterials greatly contributed to make the affordable and effective biosensor at low-cost. This research work is introducing a new sensing strategy with graphene oxide-constructed triangular electrodes to diagnose Alzheimer's disease (AD). MicroRNA-137 (miRNA-137) was found as a suitable biomarker for AD, and the sensing method was established here to detect miRNA-137 on the complementary sequence. To enhance the immobilization of capture miRNA-137, gold nanostar (GNS) was conjugated with capture miRNA and immobilized on the GO-modified surface through an amine linker. This immobilization process enhanced the hybridization of the target and reaches the detection limit at 10 fM with the sensitivity of 1 fM on the linear curve with a regression coefficient of 0.9038. Further control sequences of miRNA-21 and single and triple base mismatched miRNA-137 did not show a significant response in current changes, indicating the specific miRNA-137 detection for diagnosing AD.
  5. Ahamad Bustamam MS, Hadithon KA, Mediani A, Abas F, Rukayadi Y, Lajis N, et al.
    J Anal Methods Chem, 2017;2017:7891434.
    PMID: 28255502 DOI: 10.1155/2017/7891434
    In a study to determine the stability of the main volatile constituents of Nigella sativa seeds stored under several conditions, eight storage conditions were established, based on the ecological abiotic effects of air, heat, and light. Six replicates each were prepared and analyzed with Headspace-Gas Chromatography-Mass Spectrometry (HS-GC-MS) for three time points at the initial (1st day (0)), 14th (1), and 28th (2) day of storage. A targeted multivariate analysis of Principal Component Analysis revealed that the stability of the main volatile constituents of the whole seeds was better than that of the ground seeds. Exposed seeds, whole or ground, were observed to experience higher decrement of the volatile composition. These ecofactors of air, heat, and light are suggested to be directly responsible for the loss of volatiles in N. sativa seeds, particularly of the ground seeds.
  6. Yusan S, Rahman MM, Mohamad N, Arrif TM, Latif AZA, M A MA, et al.
    J Anal Methods Chem, 2018;2018:2687341.
    PMID: 29862120 DOI: 10.1155/2018/2687341
    A new bioenzymatic glucose biosensor for selective and sensitive detection of glucose was developed by the immobilization of glucose oxidase (GOD) onto selenium nanoparticle-mesoporous silica composite (MCM-41) matrix and then prepared as a carbon paste electrode (CPE). Cyclic voltammetry was employed to probe the catalytic behavior of the biosensor. A linear calibration plot is obtained over a wide concentration range of glucose from 1 × 10-5 to 2 × 10-3 M. Under optimal conditions, the biosensor exhibits high sensitivity (0.34 µA·mM-1), low detection limit (1 × 10-4 M), high affinity to glucose (Km = 0.02 mM), and also good reproducibility (R.S.D. 2.8%, n=10) and a stability of about ten days when stored dry at +4°C. Besides, the effects of pH value, scan rate, mediator effects on the glucose current, and electroactive interference of the biosensor were also discussed. As a result, the biosensor exhibited an excellent electrocatalytic response to glucose as well as unique stability and reproducibility.
  7. Zhang T, Zhou Y, Su G, Shi D, Gopinath SCB, Lakshmipriya T, et al.
    J Anal Methods Chem, 2019;2019:5872347.
    PMID: 31662948 DOI: 10.1155/2019/5872347
    Hydrocephalus is widely known as "hydrocephaly" or "water in the brain," a building up of abnormal cerebrospinal fluid in the brain ventricles. Due to this abnormality, the size of the head becomes larger and increases the pressure in the skull. This pressure compresses the brain and causes damage to the brain. Identification by imaging techniques on the hydrocephalus is mandatory to treat the disease. Various methods and equipment have been used to image the hydrocephalus. Among them, computerized tomography (CT) scan and nuclear magnetic resonance (NMR) are the most considered methods and gives accurate result of imaging. Apart from imaging, cerebrospinal fluid-based biomarkers are also used to identify the condition of hydrocephalus. This review is discussed on "hydrocephalus" and its imaging captured by CT scan and NMR to support the biomarker analysis.
  8. Liu X, Yang X, Shao J, Hong Y, Gopinath SCB, Chen Y, et al.
    J Anal Methods Chem, 2020;2020:6528572.
    PMID: 32309010 DOI: 10.1155/2020/6528572
    Cervical, ovarian, and endometrial cancers are common in the female reproductive system. Cervical cancer starts from the cervix, while ovarian cancer develops when abnormal cells grow in the ovary. Endometrial or uterine cancer starts from the lining of the womb in the endometrium. Approximately 12,000 women are affected every year by cervical cancer in the United States. Squamous cell carcinoma antigen (SCC-Ag) is a well-established biomarker in serum for diagnosing gynecological cancers, and its levels were observed to be elevated in cervical, ovarian, and endometrial cancer patients. Moreover, SCC-Ag was used to identify the tumor size and progression stages. Various biosensing systems have been proposed to identify SCC-Ag; herein, enhanced interdigitated electrode sensing is presented with the use of gold nanoparticles (GNPs) to conjugate an antigen/antibody. It was proved that the limit of detection is 62.5 fM in the case of antibody-GNP, which is 2-fold higher than that by SCC-Ag-GNP. Furthermore, the antibody-GNP-modified surface displays greater current increases with concomitant dose-dependent SCC-Ag levels. High analytical performance was shown by the discrimination against α-fetoprotein and CYFRA 21-1 at 1 pM. An enhanced sensing system is established for gynecological tumors, representing an advance from the earlier detection methods.
  9. Nguyen TT, Ma HT, Avti P, Bashir MJK, Ng CA, Wong LY, et al.
    J Anal Methods Chem, 2019;2019:6210240.
    PMID: 31275692 DOI: 10.1155/2019/6210240
    In this work, SiO2 nanoparticles were prepared by the sol-gel method after sodium silicate was extracted from rice husk ash (RHA) under various experimental conditions such as types of acids, NaOH concentration, dissolved time, and temperature and used for removal of Fe2+ ions from aqueous solutions. The extracted SiO2 was morphologically and chemically characterized and showed a surface area of 78 m2/g and uniform pores of 2.71 nm, offering high adsorption capacity for Fe2+ ions. The influence of pH, contact time, and amount of adsorbent was studied in order to establish the best conditions for the Fe2+ adsorption and removal. Furthermore, the adsorption data were fitted with an exponential shape curve for all the three variable parameters that affect the adsorption process. The best results were obtained for pH 5, 20 min contact time, and 0.5 g adsorbent dose. The loading adsorption capacity was 9 mg of Fe2+ ions/g SiO2 in the concentration range 0.1-1.0 mgL-1. In addition, the synthesized SiO2 with the size of around 50 nm can be used for specific heavy metal removal and drug delivery, after modification of the SiO2 surface with various functional groups.
  10. Munir MA, Badri KH
    J Anal Methods Chem, 2020;2020:5814389.
    PMID: 32377440 DOI: 10.1155/2020/5814389
    Biogenic amines (BA) are chemical compounds formed in foods that contain protein, allowing the foods to undergo a bacterial degradation process. Biogenic amines are labeled as toxic food because its consumption exceeding the FDA regulation (50 mg/kg) can be harmful to humans. Some countries also have regulations that prohibit the consumption of biogenic amines in high concentrations, especially histamine. The chromatography methods generally applied by researchers are liquid chromatography (LC) and gas chromatography (GC), where the use of a derivatization reagent is necessary to increase their sensitivity. This review is based on past and present studies about biogenic amine detection related to food samples. The rationale of this study is also to provide data on the comparison of the analytical approaches between LC and GC methods. Furthermore, the various approaches of biogenic amine determination and the most applied analytical methods have been reviewed.
  11. Ma X, Lakshmipriya T, Gopinath SCB
    J Anal Methods Chem, 2019;2019:5426974.
    PMID: 31583159 DOI: 10.1155/2019/5426974
    Cancer is the uncontrollable abnormal division of cell growth, caused due to the varied reasons. Cancer can be expressed in any part of the body, and it is one of the death-causing diseases. Human reproductive organs are commonly damaged by cancer. In particular, the women reproductive system is affected by various cancers including ovarian, cervical, endometrial, vaginal, fallopian tube, and vulvar cancers. Identifying these cancers at earlier stages prevents the damage to the organs. Aptamer is the potential probe that can identify these cancers. Aptamer is an artificial antibody selected from the randomized library of molecules and has a high binding affinity to the target biomarker. Targeting cancers in the reproductive organs using aptamers showed an excellent efficiency of detection compared to other probes. Different aptamers have been generated against the gynaecological cancer biomarkers, which include HE4, CA125, VEGF, OCCA (for ovarian cancer), EGFR, FGFR1, K-ras (for endometrial cancer), HPV E-16, HPV E-7, HPV E-6, tyrosine, and kinase (for cervical cancer), which help to identify the cancers in woman reproductive organs. In this overview, the biomarkers for gynecologic cancers and the relevant diagnosing systems generated using the specific aptamers are discussed. Furthermore, the therapeutic applications of aptamer with gynaecological cancers are narrated.
  12. You X, Gopinath SCB, Lakshmipriya T, Li D
    J Anal Methods Chem, 2019;2019:6526850.
    PMID: 31886023 DOI: 10.1155/2019/6526850
    Parkinson's disease (PD) is a progressive health issue and influences an increasingly larger number of people, especially at older ages, affecting the central nervous system (CNS). Alpha-synuclein is a biomarker closely correlated with the CNS and PD. The loss of neuronal cells in the substantia nigra leads to the aggregation of alpha-synuclein in the form of Lewy bodies, and Lewy neuritis is a neuropathological hallmark. The therapeutic approach of PD focuses on alpha-synuclein as an important substrate of PD pathology. So far, research has focused on antialpha-synuclein to minimize the burden of extracellular alpha-synuclein in the brain, and as a consequence, it ameliorates inflammation. Interdigitated electrode (IDE) biosensors are efficient tools for detecting various analytes and were chosen in this study to detect alpha-synuclein on amine-modified surfaces by using antiaptamer-alpha-synuclein as the probe. In addition, a gold nanoparticle-conjugated aptamer was used to enhance the detection limit. The limit of detection for the binding between alpha-synuclein and aptamer was found to be 10 pM. Control experiments were performed with two closely related proteins, amyloid-beta and tau, to reveal the specificity; the results show that the aptamer only recognized alpha-synuclein. The proposed strategy helps to identify the binding of aptamer and alpha-synuclein and provides a possible method to lower alpha-synuclein levels and inflammation in PD patients.
  13. Chan AS, Danquah MK, Agyei D, Hartley PG, Zhu Y
    J Anal Methods Chem, 2014;2014:175457.
    PMID: 24527255 DOI: 10.1155/2014/175457
    A microchip pressure-driven liquid chromatographic system with a packed column has been designed and fabricated by using poly(dimethylsiloxane) (PDMS). The liquid chromatographic column was packed with mesoporous silica beads of Ia3d space group. Separation of dyes and biopolymers was carried out to verify the performance of the chip. A mixture of dyes (fluorescein and rhodamine B) and a biopolymer mixture (10 kDa Dextran and 66 kDa BSA) were separated and the fluorescence technique was employed to detect the movement of the molecules. Fluorescein molecule was a nonretained species and rhodamine B was attached onto silica surface when dye mixture in deionized water was injected into the microchannel. The retention times for dextran molecule and BSA molecule in biopolymer separation experiment were 45 s and 120 s, respectively. Retention factor was estimated to be 3.3 for dextran and 10.4 for BSA. The selectivity was 3.2 and resolution was 10.7. Good separation of dyes and biopolymers was achieved and the chip design was verified.
  14. Nandi A, Pan S, Potumarthi R, Danquah MK, Sarethy IP
    J Anal Methods Chem, 2014;2014:413616.
    PMID: 25057428 DOI: 10.1155/2014/413616
    Six Sigma methodology has been successfully applied to daily operations by several leading global private firms including GE and Motorola, to leverage their net profits. Comparatively, limited studies have been conducted to find out whether this highly successful methodology can be applied to research and development (R&D). In the current study, we have reviewed and proposed a process for a probable integration of Six Sigma methodology to large-scale production of Penicillin G and its subsequent conversion to 6-aminopenicillanic acid (6-APA). It is anticipated that the important aspects of quality control and quality assurance will highly benefit from the integration of Six Sigma methodology in mass production of Penicillin G and/or its conversion to 6-APA.
  15. Bhawani SA, Albishri HM, Khan ZA, Mohamad Ibrahim MN, Mohammad A
    J Anal Methods Chem, 2013;2013:973280.
    PMID: 24455427 DOI: 10.1155/2013/973280
    This review incorporates a large number of chromatographic systems modified by the surfactants. A large number of solvent systems and stationary phases are summarized in this paper. Three different kinds of surfactants (anionic, cationic, and nonionic) are used as modifiers for stationary phases as well as solvent systems. Surfactants are used at all the three different concentration levels (below, above, and at critical micelle concentration) where surfactants behave differently. Modifications of both stationary phases and solvent systems by surfactants produced a new generation of chromatographic systems. Microemulsion solvent systems are also incorporated in this paper. Microemulsion thin-layer chromatography is a new approach in the field of chromatography.
  16. Chua LS, Rahaman NL, Adnan NA, Eddie Tan TT
    J Anal Methods Chem, 2013;2013:313798.
    PMID: 24027653 DOI: 10.1155/2013/313798
    The antioxidant activities based on the free radical scavenging, reducing power, and bleaching inhibition were investigated for the three commonly used honeys in Malaysia, namely, tualang, gelam, and acacia honey. The antioxidant capacity of the honey samples was correlated with their biochemical constituents such as total phenol, total flavonoid content, and total water-soluble vitamins (vitamin B1, B2, B3, B9, B12, and vitamin C). The total flavonoid content of honey samples was strongly correlated with the three antioxidative processes (r = 0.9276-0.9910). In contrast, the total water-soluble vitamins was found to be well correlated with the free radical scavenging activity (r = 0.8226). Vitamin B3 was likely to be in the highest concentration, which covered for 69-80% of the total vitamin content. A number of five phenolic acids, three flavonoids, and two organic acids had also been detected from the honey samples using UPLC-MS/MS, without sugar-removal procedure.
  17. Bao X, Huo G, Li L, Cao X, Liu Y, Lakshmipriya T, et al.
    J Anal Methods Chem, 2019;2019:5676159.
    PMID: 31827972 DOI: 10.1155/2019/5676159
    Gestational hypertension is one of the complicated disorders during pregnancy; it causes the significant risks, such as placental abruption, neonatal deaths, and maternal deaths. Hypertension is also responsible for the metabolic and cardiovascular issues to the mother after the years of pregnancy. Identifying and treating gestational hypertension during pregnancy by a suitable biomarker is mandatory for the healthy mother and foetus development. Cortisol has been found as a steroid hormone that is secreted by the adrenal gland and plays a pivotal role in gestational hypertension. A normal circulating level of cortisol is involved in the regulation of blood pressure, and it is necessary to monitor the changes in the level of cortisol during pregnancy. In this work, aptamer-based colorimetric assay is demonstrated as a model with gold nanorod to quantify the level of cortisol using the coordinated aggregation (at 500 mM of NaCl) and dispersion (with 10 μM of aptamer), evidenced by the scanning electron microscopy observation and UV-visible spectroscopy analysis. This colorimetric assay is an easier visual detection and reached the limit of detection of cortisol at 0.25 mg/mL. This method is reliable to identify the condition of gestational hypertension during the pregnancy period.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links