Displaying all 4 publications

Abstract:
Sort:
  1. Rouf H, Ramli A, Anuar NASIK, Yunus NM
    Bioresour Bioprocess, 2023 Nov 07;10(1):76.
    PMID: 38647992 DOI: 10.1186/s40643-023-00698-5
    Since petroleum became depleted, rapid attention has been devoted to renewable energy sources such as lignocellulosic biomass to produce useful chemicals for industry (for instance vanillin). Three primary components of lignocellulose are lignin, cellulose, and hemicellulose. This paper uses microwave-assisted technology to oxidize the kenaf stalk (lignocellulosic biomass) and extract lignin to produce vanillin. Catalysts with variable acid-base and redox properties are essential for the mentioned effective conversion, for this reason, CeO2-CA, ZrO2-CA, and CeZrO2-CA catalysts were synthesized. The citrate complexation method was used for the catalyst synthesis and the physicochemical characteristics were analyzed by XRD, FTIR, FE-SEM, TEM, BET, and TPO. The characterization results demonstrated that CeZrO2-CA shows the smallest sized crystallites with a large specific surface area among the other chosen catalysts. For vanillin production, the effect of reaction temperature, reaction time, and catalyst loading was studied. It was observed that compared to other catalysts, CeZrO2-CA produced the highest vanillin yield of 9.90% for kenaf stalk for 5 wt% of CeZrO2-CA at 160 °C for 30 min. Furthermore, vanillin production using extracted lignin is studied keeping CeZrO2-CA as a catalyst and with the same operating parameters, which yielded 14.3% of vanillin. Afterward, the change in yield with respect to pH is also presented. Finally, the recyclability of catalyst is also studied, which showed that it has a strong metal support and greater stability which may give industrial applications a significant boost.
  2. Hafid HS, Omar FN, Bahrin EK, Wakisaka M
    Bioresour Bioprocess, 2023 Jan 25;10(1):7.
    PMID: 38647891 DOI: 10.1186/s40643-023-00631-w
    BACKGROUND: Cellulose extraction from gloss art paper (GAP) waste is a recycling strategy for the abundance of gloss art paper waste. Here, a study was conducted on the impact of ultrasonic homogenization for cellulose extraction from GAP waste to improve the particle size, crystallinity, and thermal stability.

    RESULTS: At treatment temperature of 75.8 °C, ultrasonic power level of 70.3% and 1.4 h duration, cellulose with properties of 516.4 nm particle size, 71.5% crystallinity, and thermal stability of 355.2 °C were extracted. Surface modification of cellulose GAP waste with H3PO4 hydrolysis and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation was done followed by starch reinforcement. Surface hydrophobicity and mechanical strength were increased for H3PO4 hydrolysis and TEMPO oxidation starch-cellulose. No reduction of thermal properties observed during the treatment, while increment of crystallinity index up to 47.65-59.6% was shown. Neat starch film was more transparent, followed by starch-TEMPO film and starch-H3PO4 film, due to better homogeneity.

    CONCLUSIONS: The cellulose GAP reinforced starch film shows potential in developing packaging materials and simultaneously provide an alternative solution of GAP waste recycling.

  3. Jamalluddin NA, Ismail N, Mutalib SRA, Sikin AM
    Bioresour Bioprocess, 2022 Mar 12;9(1):21.
    PMID: 38647764 DOI: 10.1186/s40643-022-00509-3
    Supercritical carbon dioxide (Sc-CO2) is an alternative tool to extract lipid for the production of fish oil and enzyme from fish by-products (FBPs). In the application of Sc-CO2, this review covers sample preparation, lipid extraction operation, and characterization of fish oil and enzyme as final products. Generally, the fish samples with moisture content less than 20% and particle size less than 5 mm are considered before lipid extraction with Sc-CO2. Sc-CO2 parameters, such as pressure (P), temperature (T), extraction time (text), and flow rate (F), for simultaneous recovery of fish oil, protein, and enzyme were found to be less severe (P: 10.3-25 MPa; T: 25-45 °C, text: 20-150 min; F: 3-50 g/min) than the extraction of fish oil alone (P: 10-40 Mpa; T: 35-80 °C; text: 30-360 min; F: 1-3000 g/min). The enzyme from the Sc-CO2 defatted sample showed higher activity up to 45 U/mg due to lower denaturation of protein as compared to the organic solvent treated sample albeit both samples having similar pH (6-10) and temperature stability (20-60 °C). Overall, mild extraction of lipid from FBPs using Sc-CO2 is effective for the production of enzymes suitable in various industrial applications. Also, fish oil as a result of extraction can be produced as a health product with high polyunsaturated fatty acids (PUFAs) and low contamination of heavy metals.
  4. Dzulkarnain ELN, Audu JO, Wan Dagang WRZ, Abdul-Wahab MF
    Bioresour Bioprocess, 2022 Mar 05;9(1):16.
    PMID: 38647867 DOI: 10.1186/s40643-022-00504-8
    Biohydrogen production through dark fermentation is very attractive as a solution to help mitigate the effects of climate change, via cleaner bioenergy production. Dark fermentation is a process where organic substrates are converted into bioenergy, driven by a complex community of microorganisms of different functional guilds. Understanding of the microbiomes underpinning the fermentation of organic matter and conversion to hydrogen, and the interactions among various distinct trophic groups during the process, is critical in order to assist in the process optimisations. Research in biohydrogen production via dark fermentation is currently advancing rapidly, and various microbiology and molecular biology tools have been used to investigate the microbiomes. We reviewed here the different systems used and the production capacity, together with the diversity of the microbiomes used in the dark fermentation of industrial wastes, with a special emphasis on palm oil mill effluent (POME). The current challenges associated with biohydrogen production were also included. Then, we summarised and discussed the different molecular biology tools employed to investigate the intricacy of the microbial ecology associated with biohydrogen production. Finally, we included a section on the future outlook of how microbiome-based technologies and knowledge can be used effectively in biohydrogen production systems, in order to maximise the production output.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links