Displaying all 5 publications

Abstract:
Sort:
  1. Nor-Anuar A, Ujang Z, van Loosdrecht MC, de Kreuk MK, Olsson G
    Water Sci Technol, 2012;65(2):309-16.
    PMID: 22233910 DOI: 10.2166/wst.2012.837
    Aerobic granular sludge has a number of advantages over conventional activated sludge flocs, such as cohesive and strong matrix, fast settling characteristic, high biomass retention and ability to withstand high organic loadings, all aspects leading towards a compact reactor system. Still there are very few studies on the strength of aerobic granules. A procedure that has been used previously for anaerobic granular sludge strength analysis was adapted and used in this study. A new coefficient was introduced, called a stability coefficient (S), to quantify the strength of the aerobic granules. Indicators were also developed based on the strength analysis results, in order to categorize aerobic granules into three levels of strength, i.e. very strong (very stable), strong (stable) and not strong (not stable). The results indicated that aerobic granules grown on acetate were stronger (high density: >150 g T SSL(-1) and low S value: 5%) than granules developed on sewage as influent. A lower value of S indicates a higher stability of the granules.
  2. Nor Anuar A, Ujang Z, van Loosdrecht MC, de Kreuk MK
    Water Sci Technol, 2007;56(7):55-63.
    PMID: 17951868
    Aerobic granular sludge (AGS) technology has been extensively studied recently to improve sludge settling and behaviour in activated sludge systems. The main advantage is that aerobic granular sludge (AGS) can settle very fast in a reactor or clarifier because AGS is compact and has strong structure. It also has good settleability and a high capacity for biomass retention. Several experimental works have been conducted in this study to observe the settling behaviours of AGS. The study thus has two aims: (1) to compare the settling profile of AGS with other sludge flocs and (2) to observe the influence of mechanical mixing and design of the reactor to the settleability of AGS. The first experimental outcome shows that AGS settles after less than 5 min in a depth of 0.4 m compared to other sludge flocs (from sequencing batch reactor, conventional activated sludge and extended aeration) which takes more than 30 min. This study also shows that the turbulence from the mixing mechanism and shear in the reactor provides an insignificant effect on the AGS settling velocity.
  3. Din MF, Ujang Z, van Loosdrecht MC, Ahmad A, Sairan MF
    Water Sci Technol, 2006;53(6):15-20.
    PMID: 16749434
    The process for the production of biodegradable plastic material (polyhydroxyalkanoates, PHAs) from microbial cells by mixed-bacterial cultivation using readily available waste (renewable resources) is the main consideration nowadays. These observations have shown impressive results typically under high carbon fraction, COD/N and COD/P (usually described as nutrient-limiting conditions) and warmest temperature (moderate condition). Therefore, the aim of this work is predominantly to select mixed cultures under high storage responded by cultivation on a substrate - non limited in a single batch reactor with shortest period for feeding and to characterize their storage response by using specific and kinetics determination. In that case, the selected-fixed temperature is 30 degrees C to establish tropical conditions. During the accumulated steady-state period, the cell growth was inhibited by high PHA content within the cells because of the carbon reserve consumption. From the experiments, there is no doubt about the PHA accumulation even at high carbon fraction ratio. Apparently, the best accumulation occurred at carbon fraction, 160 +/- 7.97 g COD/g N (PHAmean, = 44.54% of dried cells). Unfortunately, the highest PHA productivity was achieved at the high carbon fraction, 560 +/- 1.62 g COD/g N (0.152 +/- 0.17 g/l. min). Overall results showed that with high carbon fraction induced to the cultivation, the PO4 and NO3 can remove up to 20% in single cultivation.
  4. Muda K, Aris A, Salim MR, Ibrahim Z, van Loosdrecht MC, Ahmad A, et al.
    Water Res, 2011 Oct 15;45(16):4711-21.
    PMID: 21714982 DOI: 10.1016/j.watres.2011.05.012
    The physical characteristics, microbial activities and kinetic properties of the granular sludge biomass were investigated under the influence of different hydraulic retention times (HRT) along with the performance of the system in removal of color and COD of synthetic textile wastewater. The study was conducted in a column reactor operated according to a sequential batch reactor with a sequence of anaerobic and aerobic reaction phases. Six stages of different HRTs and different anaerobic and aerobic reaction time were evaluated. It was observed that the increase in HRT resulted in the reduction of organic loading rate (OLR). This has caused a decrease in biomass concentration (MLSS), reduction in mean size of the granules, lowered the settling ability of the granules and reduction of oxygen uptake rate (OUR), overall specific biomass growth rate (ìoverall), endogeneous decay rate (kd) and biomass yield (Yobs, Y). When the OLR was increased by adding carbon sources (glucose, sodium acetate and ethanol), there was a slight increase in the MLSS, the granules mean size, ìoverall, and biomass yield. Under high HRT, increasing the anaerobic to aerobic reaction time ratio caused an increase in the concentration of MLSS, mean size of granules and lowered the SVI value and biomass yield. The ìoverall and biomass yield increased with the reduction in anaerobic/aerobic time ratio. The HRT of 24 h with anaerobic and aerobic reaction time of 17.8 and 5.8 h respectively appear to be the best cycle operation of SBR. Under these conditions, not only the physical properties of the biogranules have improved, the highest removal of color (i.e. 94.1±0.6%) and organics (i.e. 86.5±0.5%) of the synthetic textile dyeing wastewater have been achieved.
  5. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht MC, et al.
    Water Res, 2010 Aug;44(15):4341-50.
    PMID: 20580402 DOI: 10.1016/j.watres.2010.05.023
    Microbial granular sludge that is capable to treat textile wastewater in a single reactor under intermittent anaerobic and aerobic conditions was developed in this study. The granules were cultivated using mixed sewage and textile mill sludge in combination with anaerobic granules collected from an anaerobic sludge blanket reactor as seed. The granules were developed in a single sequential batch reactor (SBR) system under alternating anaerobic and aerobic condition fed with synthetic textile wastewater. The characteristics of the microbial granular sludge were monitored throughout the study period. During this period, the average size of the granules increased from 0.02 +/- 0.01 mm to 2.3 +/- 1.0 mm and the average settling velocity increased from 9.9 +/- 0.7 m h(-1) to 80 +/- 8 m h(-1). This resulted in an increased biomass concentration (from 2.9 +/- 0.8 g L(-1) to 7.3 +/- 0.9 g L(-1)) and mean cell residence time (from 1.4 days to 8.3 days). The strength of the granules, expressed as the integrity coefficient also improved. The sequential batch reactor system demonstrated good removal of COD and ammonia of 94% and 95%, respectively, at the end of the study. However, only 62% of color removal was observed. The findings of this study show that granular sludge could be developed in a single reactor with an intermittent anaerobic-aerobic reaction phase and is capable in treating the textile wastewater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links