Displaying all 2 publications

Abstract:
Sort:
  1. Hashim R, Sugimura A, Nguan HS, Rahman M, Zimmermann H
    J Chem Phys, 2017 Feb 28;146(8):084702.
    PMID: 28249421 DOI: 10.1063/1.4976979
    A static deuterium nuclear magnetic resonance (2HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d2 In the absence of an electric field, the 2H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.
  2. Hamasuna D, Hashim R, Kasatani A, Luckhurst GR, Sugimura A, Timimi BA, et al.
    PMID: 26172726
    The dynamic alignment of the nematic director by near-orthogonal electric and magnetic fields has been investigated. The intermediate states during the relaxation process were found, with the aid of time-resolved deuterium NMR spectroscopy, to be markedly nonuniform. The macroscopic order was perturbed, although the initial and final states of the director appear to be essentially uniform. However, the initial state does have a profound influence on the uniformity of the director in the intermediate states. We have developed a fundamental model based on the effect of spontaneous director fluctuations to explain these unusual NMR observations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links