Displaying all 4 publications

Abstract:
Sort:
  1. Rosli D, Shahar S, Manaf ZA, Lau HJ, Yusof NYM, Haron MR, et al.
    JPEN J Parenter Enteral Nutr, 2021 02;45(2):277-286.
    PMID: 32740950 DOI: 10.1002/jpen.1987
    BACKGROUND: Radiation therapy is the treatment of pelvic cancers, with diarrhea often being the most frequent acute side effect. This study aimed to determine the efficacy of partially hydrolyzed guar gum (PHGG) usage in reducing radiotherapy-induced diarrhea and improving bacterial count, nutrition status, and quality of life (QoL) among cancer patients.

    METHODS: Adult patients undergoing pelvic radiation were recruited and randomly assigned to receive supplementation of either 10 g of PHGG or placebo (maltodextrin) twice daily, 14 days prior and 14 days during pelvic radiation. Diarrhea frequency, fecal samples, nutrition status, and QoL were assessed at baseline and days 14, 28 (2 weeks after pelvic radiation), and 45 (at the completion of pelvic radiation, 2 weeks' postsupplementation).

    RESULTS: A total of 30 patients (mean age 56.5 ± 10.8 years, 75% malnourished) participated. The mean of diarrhea frequency in the intervention group (IG) was higher compared with the control group (CG) from days 14 and 28 but reduced at day 45. There was a significant intervention effect after controlling for confounders (ie, baseline diarrhea, age, nutrition status) (P < .05). Bifidobacterium count increased by double among the IG at 14 days of PHGG supplementation, whereas such trend was not observed in the CG.

    CONCLUSION: Supplementation of PHGG potentially increased the bifidobacterial count and seemed to have post-supplementation effects by reducing the frequency of diarrhea upon the completion of pelvic radiation treatment.

  2. Jamaluddin ND, Mazlan NF, Tan LL, Yusof NYM, Khalid B
    Int J Biol Macromol, 2022 Feb 28;199:1-9.
    PMID: 34922999 DOI: 10.1016/j.ijbiomac.2021.12.047
    Dengue virus (DENV) is a positive-sense single-stranded RNA virus and that the detection of viral RNA itself is highly desirable, which can be achieved by using RNA biosensor diagnostic method. Herein, acrylic micropolymer-based optical RNA biosensor was developed by binding anionic copper(II) phthalocyanine (CPC) planar aromatic ligand to the G-quadruplex DNA probe via end-stacking with π-system of the guanine (G) quartet, and a blue coloration was developed on the G-quadruplex microspheres. Hybridization of G-quadruplex DNA probe with target DENV serotype 2 (DENV2) RNA unfolded the G-quadruplex, and rendering release of the CPC planar optical label, causing discoloration of the G-quadruplex microbiosensor. Optical characterization of the RNA biosensor was performed by means of fiber optic reflectance spectrophotometer at maximum reflectance wavelength of 774 nm. The reflectance response enhancement of the RNA-responsive G-quadruplex-based reflectometric biosensor was linearly proportional to the target oligo DENV2 RNA concentration in the range of 2 zM-2 μM, with a 0.447 zM limit of detection and a rapid response time of 30 min. Heightening in the reflectance signal based on structural transition of G-quadruplex in response to target RNA was successfully implemented in real-time DENV2 detection in non-invasive human fluid samples (i.e. saliva and urine) under informed consent.
  3. Akbar MA, Yusof NYM, Sahrani FK, Usup G, Ahmad A, Baharum SN, et al.
    Biology (Basel), 2021 Aug 25;10(9).
    PMID: 34571703 DOI: 10.3390/biology10090826
    The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.
  4. Mazlan NF, Tan LL, Karim NHA, Heng LY, Jamaluddin ND, Yusof NYM, et al.
    Talanta, 2019 Jun 01;198:358-370.
    PMID: 30876573 DOI: 10.1016/j.talanta.2019.02.036
    An optical genosensor based on Schiff base complex (Zn2+ salphen) DNA label and acrylic microspheres (AMs) as polymer support of the capturing DNA probe (cpDNA) was developed for dengue virus serotype 2 (DEN-2) detection via reflectance spectrophotometric method. The solid-state optical DNA biosensor showed high selectivity and specificity up to one-base mismatch in the target DNA sequence owing to the salphen chemical structure that is rich in localized electrons, and allowed π-π stacking interaction between stacked base pairs of double-stranded DNA (dsDNA). The reflectometric DNA microsensor demonstrated a broad linear detection range towards DEN-2 DNA from 1 × 10-15 M to 1 × 10-3 M with a low limit of detection (LOD) obtained at 1.21 × 10-16 M. The DNA biosensor gave reproducible optical response with a satisfactory relative standard deviation (RSD) at 3.1%, (n = 3), and the reflectance response was stable even after four regeneration cycles of the DNA biosensor. The optical genosensor was proven comparable with standard reverse transcription polymerase chain reaction (RT-PCR) in detecting DEN-2 genome acquired from clinical samples of serum, urine and saliva of dengue virus infected patients under informed consent. The developed reflectometric DNA biosensor is advantageous in offering an early DEN-2 diagnosis, when fever symptom started to manifest in patient.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links