Displaying all 6 publications

Abstract:
Sort:
  1. Yip MY, Dhaliwal SS, Yong HS
    Hum. Hered., 1979;29(1):5-9.
    PMID: 761922
    Four red cell enzyme systems were studied in Malaysian mothers and their newborn belonging to three racial groups, the Malays, Indians and Chinese. No significant heterogeneity was observed in the distribution of phosphoglucomutase (PGM1), adenosine deaminase (ADA), 6-phosphogluconate dehydrogenase (6PGD) and acid phosphatase (AP) phenotypes between mothers and their newborn of the three groups. Pooled mother and child acid phosphatase data show a significant heterogeneity between the Malays and Chinese, and between the Malays and Indians. This is comparable to previous studies conducted. For the placental phosphoglucomutase (PGM3) system, a significant heterogeneity was observed between the Chinese and Malays only. No significant heterogeneity was detected in the distribution of PGM1, ADA and 6PGD phenotypes among Malays, Chinese and Indians.
  2. Yip MY, Yong HS, Dhaliwal SS
    Med J Malaysia, 1978 Jun;32(4):316-20.
    PMID: 732631
  3. Yip M, Saripan MI, Wells K, Bradley DA
    PLoS One, 2015;10(9):e0135769.
    PMID: 26348619 DOI: 10.1371/journal.pone.0135769
    Detection of buried improvised explosive devices (IEDs) is a delicate task, leading to a need to develop sensitive stand-off detection technology. The shape, composition and size of the IEDs can be expected to be revised over time in an effort to overcome increasingly sophisticated detection methods. As an example, for the most part, landmines are found through metal detection which has led to increasing use of non-ferrous materials such as wood or plastic containers for chemical based explosives being developed.
  4. Tsuboi M, Lim AC, Ooi BL, Yip MY, Chong VC, Ahnesjö I, et al.
    J Evol Biol, 2017 Jan;30(1):150-160.
    PMID: 27748990 DOI: 10.1111/jeb.12995
    Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger.
  5. Ghazalli N, Wu X, Walker S, Trieu N, Hsin LY, Choe J, et al.
    Stem Cells Dev, 2018 07 01;27(13):898-909.
    PMID: 29717618 DOI: 10.1089/scd.2017.0160
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links