Displaying all 16 publications

Abstract:
Sort:
  1. Yeoh AE, Lu Y, Chan JY, Chan YH, Ariffin H, Kham SK, et al.
    Leuk. Res., 2010 Mar;34(3):276-83.
    PMID: 19651439 DOI: 10.1016/j.leukres.2009.07.003
    To study genetic epidemiology of childhood acute lymphoblastic leukemia (ALL) in the Chinese and Malays, we investigated 10 polymorphisms encoding carcinogen- or folate-metabolism and transport. Sex-adjusted analysis showed NQO1 609CT significantly protects against ALL, whilst MTHFR 677CT confers marginal protection. Interestingly, we observed that NQO1 609CT and MTHFR 1298 C-allele have greater genetic impact in boys than in girls. The combination of SLC19A1 80GA heterozygosity and 3'-TYMS -6bp/-6bp homozygous deletion is associated with reduced ALL risk in Malay boys. Our study has suggested the importance of gender and race in modulating ALL susceptibility via the folate metabolic pathway.
  2. Ariffin H, Chen SP, Kwok CS, Quah TC, Lin HP, Yeoh AE
    J Pediatr Hematol Oncol, 2007 Jan;29(1):27-31.
    PMID: 17230064
    Childhood acute lymphoblastic leukemia (ALL) is clinically heterogeneous with prognostically and biologically distinct subtypes. Although racial differences in frequency of different types of childhood ALL have been reported, many are confounded by selected or limited population samples. The Malaysia-Singapore (MA-SPORE) Leukemia Study Group provided a unique platform for the study of the frequency of major subgroups of childhood ALL in a large cohort of unselected multiethnic Asian children. Screening for the prognostically important chromosome abnormalities (TEL-AML1, BCR-ABL, E2A-PBX1, and MLL) using multiplex reverse-transcription polymerase chain reaction was performed on 299 consecutive patients with ALL at 3 study centers (236 de novo, 63 at relapse), with the ethnic composition predominantly Chinese (51.8%) and Malay (34.8%). Reverse-transcription polymerase chain reaction was successful in 278 (93%) of cases screened. The commonest fusion transcript was TEL-AML1 (19.1%) followed by BCR-ABL (7.8%), MLL rearrangements (4.2%), and E2A-PBX1 (3.1%). Chinese have a significantly lower frequency of TEL-AML1 (13.3% in de novo patients) compared with Malays (22.2%) and Indians (21.7%) (P=0.04). Malays have a lower frequency of T-ALL (6.2%) compared with the Chinese and Indians (9.8%). Both Malays (7.4%) and Chinese (5.0%) have significantly higher frequency of BCR-ABL compared with the Indian population (P<0.05) despite a similar median age at presentation. Our study suggests that there are indeed significant and important racial differences in the frequency of subtypes of childhood ALL. Comprehensive subgrouping of childhood ALL may reveal interesting population frequency differences of the various subtypes, their risk factors and hopefully, its etiology.
  3. Kham SK, Tan PL, Tay AH, Heng CK, Yeoh AE, Quah TC
    J Pediatr Hematol Oncol, 2002 Jun-Jul;24(5):353-9.
    PMID: 12142782
    The purpose of this study was to determine the frequency of thiopurine methyltransferase (TPMT) polymorphisms in a multiracial Asian population and to assess its relevance in the management of childhood acute lymphoblastic leukemia (ALL). Six hundred unrelated cord blood samples from 200 Chinese, Malay, and Indian healthy newborns were collected at the National University Hospital, Singapore; an additional 100 children with ALL were analyzed for five of the commonly reported TPMT variant alleles using polymerase chain reaction/restriction fragment length polymorphism and allele-specific polymerase chain reaction-based assays. In the cord blood study, the TPMT*3C variant was detected in all three ethnic groups; Chinese, Malays, and Indians had allele frequencies of 3%, 2.3%, and 0.8%, respectively. The TPMT*3A variant was found only among the Indians at a low allele frequency of 0.5%. The TPMT*6 variant was found in one Malay sample. Among the children with ALL, two white and one Chinese were heterozygous for the TPMT*3A variant and showed intermediate sensitivity to 6-mercaptopurine during maintenance therapy. Three Chinese patients and one Malay patient were heterozygous for the TPMT*3C variant. Mercaptopurine sensitivity could be validated in only one out of four TPMT*3C heterozygous patients. The overall allele frequency of the TPMT variants in this multiracial population was 2.5%. The TPMT*3C was the most common variant allele; TPMT*3A and TPMT*6 were rare. These results support the feasibility of performing TPMT genotyping in all children diagnosed with acute leukemia to minimize toxicity from thiopurine chemotherapy.
  4. Ibrahim K, Daud SS, Seah YL, Yeoh AE, Ariffin H, Malaysia-Singapore Leukemia Study Group
    Ann Clin Lab Sci, 2008;38(4):338-43.
    PMID: 18988926
    Childhood acute lymphoblastic leukaemia (ALL) is a heterogenous disease in which oncogene fusion transcripts are known to influence the biological behaviour of the different ALL subtypes. Screening for prognostically important transcripts is an important diagnostic step in treatment stratification and prognostication of affected patients. We describe a SYBR-Green real-time multiplex PCR assay to screen for transcripts TEL-AML1, E2A-PBX1, MLL-AF4, and the two breakpoints of BCR-ABL (p190 and p210). Validation of the assay was based on conventional karyotyping results. This new assay provides a rapid, sensitive, and accurate detection method for prognostically important transcripts in childhood ALL.
  5. Lu Y, Kham SK, Ariffin H, Oei AM, Lin HP, Tan AM, et al.
    Br. J. Cancer, 2014 Mar 18;110(6):1673-80.
    PMID: 24434428 DOI: 10.1038/bjc.2014.7
    Host germline variations and their potential prognostic importance is an emerging area of interest in paediatric ALL.
  6. Kham SK, Yin SK, Quah TC, Loong AM, Tan PL, Fraser A, et al.
    J Pediatr Hematol Oncol, 2004 Dec;26(12):817-9.
    PMID: 15591902
    DNA technology provides a new avenue to perform neonatal screening tests for single-gene diseases in populations of high frequency. Thalassemia is one of the high-frequency single-gene disorders affecting Singapore and many countries in the malaria belt. The authors explored the feasibility of using PCR-based diagnostic screening on 1,116 unselected sequential cord blood samples for neonatal screening. The cord blood samples were screened for the most common reported alpha- and beta-thalassemia mutations in each ethnic group (Chinese, Malays, and Indians) in a multiracial population. The carrier frequency for alpha-thalassemia mutations was about 6.4% in the Chinese (alpha deletions = 3.9%, alpha deletions = 2.5%), 4.8% in Malays, and 5.2% in Indians. Only alpha deletions were observed in the Chinese. The carrier frequency for beta-thalassemia mutations was 2.7% in the Chinese, 6.3% in Malays, and 0.7% in Indians. Extrapolating to the population distribution of Singapore, the authors found a higher overall expected carrier frequency for alpha- and beta-thalassemia mutations of 9% compared with a previous population study of 6% by phenotype. The highly accurate results make this molecular epidemiologic screening an ideal method to screen for and prevent severe thalassemia in high-risk populations.
  7. Koschut D, Ray D, Li Z, Giarin E, Groet J, Alić I, et al.
    Oncogene, 2021 01;40(4):746-762.
    PMID: 33247204 DOI: 10.1038/s41388-020-01567-7
    Leukemias are routinely sub-typed for risk/outcome prediction and therapy choice using acquired mutations and chromosomal rearrangements. Down syndrome acute lymphoblastic leukemia (DS-ALL) is characterized by high frequency of CRLF2-rearrangements, JAK2-mutations, or RAS-pathway mutations. Intriguingly, JAK2 and RAS-mutations are mutually exclusive in leukemic sub-clones, causing dichotomy in therapeutic target choices. We prove in a cell model that elevated CRLF2 in combination with constitutionally active JAK2 is sufficient to activate wtRAS. On primary clinical DS-ALL samples, we show that wtRAS-activation is an obligatory consequence of mutated/hyperphosphorylated JAK2. We further prove that CRLF2-ligand TSLP boosts the direct binding of active PTPN11 to wtRAS, providing the molecular mechanism for the wtRAS activation. Pre-inhibition of RAS or PTPN11, but not of PI3K or JAK-signaling, prevented TSLP-induced RAS-GTP boost. Cytotoxicity assays on primary clinical DS-ALL samples demonstrated that, regardless of mutation status, high-risk leukemic cells could only be killed using RAS-inhibitor or PTPN11-inhibitor, but not PI3K/JAK-inhibitors, suggesting a unified treatment target for up to 80% of DS-ALL. Importantly, protein activities-based principal-component-analysis multivariate clusters analyzed for independent outcome prediction using Cox proportional-hazards model showed that protein-activity (but not mutation-status) was independently predictive of outcome, demanding a paradigm-shift in patient-stratification strategy for precision therapy in high-risk ALL.
  8. Yeoh AE, Li Z, Dong D, Lu Y, Jiang N, Trka J, et al.
    Br J Haematol, 2018 Jun;181(5):653-663.
    PMID: 29808917 DOI: 10.1111/bjh.15252
    Accurate risk assignment in childhood acute lymphoblastic leukaemia is essential to avoid under- or over-treatment. We hypothesized that time-series gene expression profiles (GEPs) of bone marrow samples during remission-induction therapy can measure the response and be used for relapse prediction. We computed the time-series changes from diagnosis to Day 8 of remission-induction, termed Effective Response Metric (ERM-D8) and tested its ability to predict relapse against contemporary risk assignment methods, including National Cancer Institutes (NCI) criteria, genetics and minimal residual disease (MRD). ERM-D8 was trained on a set of 131 patients and validated on an independent set of 79 patients. In the independent blinded test set, unfavourable ERM-D8 patients had >3-fold increased risk of relapse compared to favourable ERM-D8 (5-year cumulative incidence of relapse 38·1% vs. 10·6%; P = 2·5 × 10-3 ). ERM-D8 remained predictive of relapse [P = 0·05; Hazard ratio 4·09, 95% confidence interval (CI) 1·03-16·23] after adjusting for NCI criteria, genetics, Day 8 peripheral response and Day 33 MRD. ERM-D8 improved risk stratification in favourable genetics subgroups (P = 0·01) and Day 33 MRD positive patients (P = 1·7 × 10-3 ). We conclude that our novel metric - ERM-D8 - based on time-series GEP after 8 days of remission-induction therapy can independently predict relapse even after adjusting for NCI risk, genetics, Day 8 peripheral blood response and MRD.
  9. Yeoh AE, Ariffin H, Chai EL, Kwok CS, Chan YH, Ponnudurai K, et al.
    J Clin Oncol, 2012 Jul 1;30(19):2384-92.
    PMID: 22614971 DOI: 10.1200/JCO.2011.40.5936
    PURPOSE: To improve treatment outcome for childhood acute lymphoblastic leukemia (ALL), we designed the Malaysia-Singapore ALL 2003 study with treatment stratification based on presenting clinical and genetic features and minimal residual disease (MRD) levels measured by polymerase chain reaction targeting a single antigen-receptor gene rearrangement.
    PATIENTS AND METHODS: Five hundred fifty-six patients received risk-adapted therapy with a modified Berlin-Frankfurt-Münster-ALL treatment. High-risk ALL was defined by MRD ≥ 1 × 10(-3) at week 12 and/or poor prednisolone response, BCR-ABL1, MLL gene rearrangements, hypodiploid less than 45 chromosomes, or induction failure; standard-risk ALL was defined by MRD ≤ 1 × 10(-4) at weeks 5 and 12 and no extramedullary involvement or high-risk features. Intermediate-risk ALL included all remaining patients.
    RESULTS: Patients who lacked high-risk presenting features (85.7%) received remission induction therapy with dexamethasone, vincristine, and asparaginase, without anthracyclines. Six-year event-free survival (EFS) was 80.6% ± 3.5%; overall survival was 88.4% ± 3.1%. Standard-risk patients (n = 172; 31%) received significantly deintensified subsequent therapy without compromising EFS (93.2% ± 4.1%). High-risk patients (n = 101; 18%) had the worst EFS (51.8% ± 10%); EFS was 83.6% ± 4.9% in intermediate-risk patients (n = 283; 51%).
    CONCLUSION: Our results demonstrate significant progress over previous trials in the region. Three-drug remission-induction therapy combined with MRD-based risk stratification to identify poor responders is an effective strategy for childhood ALL.
  10. Jiang N, Wang L, Xiang X, Li Z, Chiew EKH, Koo YM, et al.
    Br J Clin Pharmacol, 2021 Apr;87(4):1990-1999.
    PMID: 33037681 DOI: 10.1111/bcp.14596
    AIMS: Vincristine (VCR) is a key drug in the successful multidrug chemotherapy for childhood acute lymphoblastic leukaemia (ALL). However, it remains unclear how VCR pharmacokinetics affects its antileukaemic efficacy. The objective of this study is to explore the VCR pharmacokinetic parameters and intracellular VCR levels in an up-front window of Ma-Spore ALL 2010 (MS2010) study.

    METHODS: We randomised 429 children with newly diagnosed ALL to 15-minute vs 3-hour infusion for the first dose of VCR to study if prolonging the first dose of VCR infusion improved response. In a subgroup of 115 B-ALL and 20 T-ALL patients, we performed VCR plasma (n = 135 patients) and intracellular (n = 66 patients) pharmacokinetic studies. The correlations between pharmacokinetic parameters and intracellular VCR levels with early treatment response, final outcome and ABCB1 genotypes were analysed.

    RESULTS: There was no significant difference between 15-minute and 3-hour infusion schedules in median Day 8 peripheral or bone marrow blast response. Plasma VCR pharmacokinetic parameters did not predict outcome. However, in B-ALL, Day 33 minimal residual disease (MRD) negative patients and patients in continuous complete remission had significantly higher median intracellular VCR24h levels (P = .03 and P = .04, respectively). The median VCR24h intracellular levels were similar among the common genetic subtypes of ALL (P = .4). Patients homozygous for wild-type ABCB1 2677GG had significantly higher median intracellular VCR24h (P = .04) than 2677TT.

    CONCLUSION: We showed that in childhood B-ALL, the intracellular VCR24h levels in lymphoblasts affected treatment outcomes. The intracellular VCR24h level was independent of leukaemia subtype but dependent on host ABCB1 G2677T genotype.

  11. Li Z, Jiang N, Lim EH, Chin WHN, Lu Y, Chiew KH, et al.
    Leukemia, 2020 09;34(9):2418-2429.
    PMID: 32099036 DOI: 10.1038/s41375-020-0774-4
    Identifying patient-specific clonal IGH/TCR junctional sequences is critical for minimal residual disease (MRD) monitoring. Conventionally these junctional sequences are identified using laborious Sanger sequencing of excised heteroduplex bands. We found that the IGH is highly expressed in our diagnostic B-cell acute lymphoblastic leukemia (B-ALL) samples using RNA-Seq. Therefore, we used RNA-Seq to identify IGH disease clone sequences in 258 childhood B-ALL samples for MRD monitoring. The amount of background IGH rearrangements uncovered by RNA-Seq followed the Zipf's law with IGH disease clones easily identified as outliers. Four hundred and ninety-seven IGH disease clones (median 2, range 0-7 clones/patient) are identified in 90.3% of patients. High hyperdiploid patients have the most IGH disease clones (median 3) while DUX4 subtype has the least (median 1) due to the rearrangements involving the IGH locus. In all, 90.8% of IGH disease clones found by Sanger sequencing are also identified by RNA-Seq. In addition, RNA-Seq identified 43% more IGH disease clones. In 69 patients lacking sensitive IGH targets, targeted NGS IGH MRD showed high correlation (R = 0.93; P = 1.3 × 10-14), better relapse prediction than conventional RQ-PCR MRD using non-IGH targets. In conclusion, RNA-Seq can identify patient-specific clonal IGH junctional sequences for MRD monitoring, adding to its usefulness for molecular diagnosis in childhood B-ALL.
  12. Li Z, Lee SHR, Chin WHN, Lu Y, Jiang N, Lim EH, et al.
    Blood Adv, 2021 12 14;5(23):5226-5238.
    PMID: 34547766 DOI: 10.1182/bloodadvances.2021004895
    Among the recently described subtypes in childhood B-lymphoblastic leukemia (B-ALL) were DUX4- and PAX5-altered (PAX5alt). By using whole transcriptome RNA sequencing in 377 children with B-ALL from the Malaysia-Singapore ALL 2003 (MS2003) and Malaysia-Singapore ALL 2010 (MS2010) studies, we found that, after hyperdiploid and ETV6-RUNX1, the third and fourth most common subtypes were DUX4 (n = 51; 14%) and PAX5alt (n = 36; 10%). DUX4 also formed the largest genetic subtype among patients with poor day-33 minimal residual disease (MRD; n = 12 of 44). But despite the poor MRD, outcome of DUX4 B-ALL was excellent (5-year cumulative risk of relapse [CIR], 8.9%; 95% confidence interval [CI], 2.8%-19.5% and 5-year overall survival, 97.8%; 95% CI, 85.3%-99.7%). In MS2003, 21% of patients with DUX4 B-ALL had poor peripheral blood response to prednisolone at day 8, higher than other subtypes (8%; P = .03). In MS2010, with vincristine at day 1, no day-8 poor peripheral blood response was observed in the DUX4 subtype (P = .03). The PAX5alt group had an intermediate risk of relapse (5-year CIR, 18.1%) but when IKZF1 was not deleted, outcome was excellent with no relapse among 23 patients. Compared with MS2003, outcome of PAX5alt B-ALL with IKZF1 codeletion was improved by treatment intensification in MS2010 (5-year CIR, 80.0% vs 0%; P = .05). In conclusion, despite its poor initial response, DUX4 B-ALL had a favorable overall outcome, and the prognosis of PAX5alt was strongly dependent on IKZF1 codeletion.
  13. Moriyama T, Yang YL, Nishii R, Ariffin H, Liu C, Lin TN, et al.
    Blood, 2017 Sep 07;130(10):1209-1212.
    PMID: 28659275 DOI: 10.1182/blood-2017-05-782383
    Prolonged exposure to thiopurines (eg, mercaptopurine [MP]) is essential for curative therapy in acute lymphoblastic leukemia (ALL), but is also associated with frequent dose-limiting hematopoietic toxicities, which is partly explained by inherited genetic polymorphisms in drug metabolizing enzymes (eg, TPMT). Recently, our group and others identified germ line genetic variants in NUDT15 as another major cause of thiopurine-related myelosuppression, particularly in Asian and Hispanic people. In this article, we describe 3 novel NUDT15 coding variants (p.R34T, p.K35E, and p.G17_V18del) in 5 children with ALL enrolled in frontline protocols in Singapore, Taiwan, and at St. Jude Children's Research Hospital. Patients carrying these variants experienced significant toxicity and reduced tolerance to MP across treatment protocols. Functionally, all 3 variants led to partial to complete loss of NUDT15 nucleotide diphosphatase activity and negatively influenced protein stability. In particular, the p.G17_V18del variant protein showed extremely low thermostability and was completely void of catalytic activity, thus likely to confer a high risk of thiopurine intolerance. This in-frame deletion was only seen in African and European patients, and is the first NUDT15 risk variant identified in non-Asian, non-Hispanic populations. In conclusion, we discovered 3 novel loss-of-function variants in NUDT15 associated with MP toxicity, enabling more comprehensive pharmacogenetics-based thiopurine dose adjustments across diverse populations.
  14. Li JF, Dai YT, Lilljebjörn H, Shen SH, Cui BW, Bai L, et al.
    Proc Natl Acad Sci U S A, 2018 12 11;115(50):E11711-E11720.
    PMID: 30487223 DOI: 10.1073/pnas.1814397115
    Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with MEF2D fusions, TCF3-PBX1 fusions, ETV6-RUNX1-positive/ETV6-RUNX1-like, DUX4 fusions, ZNF384 fusions, BCR-ABL1/Ph-like, high hyperdiploidy, and KMT2A fusions), we defined six additional gene expression subgroups: G9 was associated with both PAX5 and CRLF2 fusions; G10 and G11 with mutations in PAX5 (p.P80R) and IKZF1 (p.N159Y), respectively; G12 with IGH-CEBPE fusion and mutations in ZEB2 (p.H1038R); and G13 and G14 with TCF3/4-HLF and NUTM1 fusions, respectively. In pediatric BCP ALL, subgroups G2 to G5 and G7 (51 to 65/67 chromosomes) were associated with low-risk, G7 (with ≤50 chromosomes) and G9 were intermediate-risk, whereas G1, G6, and G8 were defined as high-risk subgroups. In adult BCP ALL, G1, G2, G6, and G8 were associated with high risk, while G4, G5, and G7 had relatively favorable outcomes. This large-scale transcriptome sequence analysis of BCP ALL revealed distinct molecular subgroups that reflect discrete pathways of BCP ALL, informing disease classification and prognostic stratification. The combined results strongly advocate that RNA sequencing be introduced into the clinical diagnostic workup of BCP ALL.
  15. Qian M, Zhang H, Kham SK, Liu S, Jiang C, Zhao X, et al.
    Genome Res, 2017 02;27(2):185-195.
    PMID: 27903646 DOI: 10.1101/gr.209163.116
    Chromosomal translocations are a genomic hallmark of many hematologic malignancies. Often as initiating events, these structural abnormalities result in fusion proteins involving transcription factors important for hematopoietic differentiation and/or signaling molecules regulating cell proliferation and cell cycle. In contrast, epigenetic regulator genes are more frequently targeted by somatic sequence mutations, possibly as secondary events to further potentiate leukemogenesis. Through comprehensive whole-transcriptome sequencing of 231 children with acute lymphoblastic leukemia (ALL), we identified 58 putative functional and predominant fusion genes in 54.1% of patients (n = 125), 31 of which have not been reported previously. In particular, we described a distinct ALL subtype with a characteristic gene expression signature predominantly driven by chromosomal rearrangements of the ZNF384 gene with histone acetyltransferases EP300 and CREBBP ZNF384-rearranged ALL showed significant up-regulation of CLCF1 and BTLA expression, and ZNF384 fusion proteins consistently showed higher activity to promote transcription of these target genes relative to wild-type ZNF384 in vitro. Ectopic expression of EP300-ZNF384 and CREBBP-ZNF384 fusion altered differentiation of mouse hematopoietic stem and progenitor cells and also potentiated oncogenic transformation in vitro. EP300- and CREBBP-ZNF384 fusions resulted in loss of histone lysine acetyltransferase activity in a dominant-negative fashion, with concomitant global reduction of histone acetylation and increased sensitivity of leukemia cells to histone deacetylase inhibitors. In conclusion, our results indicate that gene fusion is a common class of genomic abnormalities in childhood ALL and that recurrent translocations involving EP300 and CREBBP may cause epigenetic deregulation with potential for therapeutic targeting.
  16. Hu S, Qian M, Zhang H, Guo Y, Yang J, Zhao X, et al.
    Blood, 2017 Jun 15;129(24):3264-3268.
    PMID: 28408461 DOI: 10.1182/blood-2017-03-771162
    Publisher's Note: There is an Inside Blood Commentary on this article in this issue.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links