Displaying all 2 publications

Abstract:
Sort:
  1. Ain QU, Khan MA, Yaqoob MM, Khattak UF, Sajid Z, Khan MI, et al.
    Diagnostics (Basel), 2023 Jul 04;13(13).
    PMID: 37443658 DOI: 10.3390/diagnostics13132264
    Cancer, including the highly dangerous melanoma, is marked by uncontrolled cell growth and the possibility of spreading to other parts of the body. However, the conventional approach to machine learning relies on centralized training data, posing challenges for data privacy in healthcare systems driven by artificial intelligence. The collection of data from diverse sensors leads to increased computing costs, while privacy restrictions make it challenging to employ traditional machine learning methods. Researchers are currently confronted with the formidable task of developing a skin cancer prediction technique that takes privacy concerns into account while simultaneously improving accuracy. In this work, we aimed to propose a decentralized privacy-aware learning mechanism to accurately predict melanoma skin cancer. In this research we analyzed federated learning from the skin cancer database. The results from the study showed that 92% accuracy was achieved by the proposed method, which was higher than baseline algorithms.
  2. Khan MA, Alsulami M, Yaqoob MM, Alsadie D, Saudagar AKJ, AlKhathami M, et al.
    Diagnostics (Basel), 2023 Jul 11;13(14).
    PMID: 37510084 DOI: 10.3390/diagnostics13142340
    Healthcare professionals consider predicting heart disease an essential task and deep learning has proven to be a promising approach for achieving this goal. This research paper introduces a novel method called the asynchronous federated deep learning approach for cardiac prediction (AFLCP), which combines a heart disease dataset and deep neural networks (DNNs) with an asynchronous learning technique. The proposed approach employs a method for asynchronously updating the parameters of DNNs and incorporates a temporally weighted aggregation technique to enhance the accuracy and convergence of the central model. To evaluate the effectiveness of the proposed AFLCP method, two datasets with various DNN architectures are tested, and the results demonstrate that the AFLCP approach outperforms the baseline method in terms of both communication cost and model accuracy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links