Displaying all 3 publications

Abstract:
Sort:
  1. Ko Y, Yao KS, Chen CY, Lin CH
    Plant Dis, 2007 Dec;91(12):1684.
    PMID: 30780618 DOI: 10.1094/PDIS-91-12-1684B
    Mango (Mangifera indica L.; family Anacardiaceae) is one of the world's most important fruit crops and is widely grown in tropical and subtropical regions. Since 2001, a leaf spot disease was found in mango orchards of Taiwan. Now, the disease was observed throughout (approximately 21,000 ha) Taiwan in moderate to severe form, thus affecting the general health of mango trees and orchards. Initial symptoms were small, yellow-to-brown spots on leaves. Later, the irregularly shaped spots, ranging from a few millimeters to a few centimeters in diameter, turned white to gray and coalesced to form larger gray patches. Lesions had slightly raised dark margins. On mature lesions, numerous black acervuli, measuring 290 to 328 μm in diameter, developed on the gray necrotic areas. Single conidial isolates of the fungus were identified morphologically as Pestalotiopsis mangiferae (Henn.) Steyaert (2,3) and were consistently isolated from the diseased mango leaves on acidified (0.06% lactic acid) potato dextrose agar (PDA) medium incubated at 25 ± 1°C. Initially, the fungus grew (3 mm per day) on PDA as a white, chalky colony that subsequently turned gray after 2 weeks. Acervuli developed in culture after continuous exposure to light for 9 to 12 days at 20 to 30°C. Abundant conidia oozed from the acervulus as a creamy mass. The conidia (17.6 to 25.4 μm long and 4.8 to 7.1 μm wide) were fusiform and usually straight to slightly curved with four septa. Three median cells were olivaceous and larger than the hyaline apical and basal cells. The apical cells bore three (rarely four) cylindrical appendages. Pathogenicity tests were conducted with either 3-day-old mycelial discs or conidial suspension (105 conidia per ml) obtained from 8- to 10-day-old cultures. Four leaves on each of 10 trees were inoculated. Before inoculation, the leaves were washed with a mild detergent, rinsed with tap water, and then surface sterilized with 70% ethanol. Leaves were wounded with a needle and exposed to either a 5-mm mycelial disc or 0.2 ml of the spore suspension. The inoculated areas were wrapped with cotton pads saturated with sterile water and the leaves were covered with polyethylene bags for 3 days to maintain high relative humidity. Wounded leaves inoculated with PDA discs alone served as controls. The symptoms described above were observed on all inoculated leaves, whereas uninoculated leaves remained completely free from symptoms. Reisolation from the inoculated leaves consistently yielded P. mangiferae, thus fulfilling Koch's postulates. Gray leaf spot is a common disease of mangos in the tropics and is widely distributed in Africa and Asia (1-3); however, to our knowledge, this is the first report of gray leaf spot disease affecting mango in Taiwan. References: (1) T. K. Lim and K. C. Khoo. Diseases and Disorders of Mango in Malaysia. Tropical Press. Malaysia, 1985. (2) J. E. M. Mordue. No. 676 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Surrey, England, 1980. (3) R. C. Ploetz et al. Compendium of Tropical Fruit Diseases. The American Phytopathological Society. St. Paul, MN, 1994.
  2. Ko Y, Chen CY, Yao KS, Liu CW, Maruthasalam S, Lin CH
    Plant Dis, 2008 Aug;92(8):1248.
    PMID: 30769472 DOI: 10.1094/PDIS-92-8-1248B
    In March 2005, a fruit rot disease was found in several commercial strawberry (Fragaria × ananassa Duchesne) fields at Fongyuan, 24.25°N, 120.72°E, in Taichung County in central Taiwan. The disease was rare and was negligible in most cultivated areas. However, disease incidence has increased by 4 to 5% over the last 2 years and causes significant postharvest losses. In storage, symptoms on berries include light brown-to-black, sunken, irregularly shaped lesions. The lesions gradually enlarge and become firm with a dark green-to-black, velvety surface composed of mycelia, conidiophores, and conidia. Twelve single conidial isolates (AF-1 to AF-12) of a fungus were isolated by placing portions of symptomatic fruit from four locations onto acidified potato dextrose agar (PDA) and incubating at 24 ± 1°C. One isolate from each of the four locations, AF-2, 6, 9, and 12, was selected for identification and pathogenicity studies. The fungus was identified as an Alternaria sp. according to the morphological descriptions of A. tenuissima (2,3). Conidiophores were simple or branched, straight or flexuous, septate, pale to light brown, 3.0 to 5.0 μm in diameter, and bore two to six conidia in a chain. Conidia were dark brown, obclavate or oval, and multicellular with seven transverse (in most cases) and numerous longitudinal septa. Conidia were 15.5 to 56.5 μm (average 35.0 μm) long × 6.0 to 15.0 μm (average 11.0 μm) wide at the broadest point. The pathogen was consistently isolated from berries in the field or in storage. Pathogenicity tests were conducted by inoculating 12 surface-sterilized berries with each of the four isolates. Approximately 300 μl of a spore suspension (2 × 105 conidia per ml) was placed at two points on the uninjured surface of each fruit and allowed to dry for 5 min. Control fruits were treated with sterile water. The berries were then enclosed in a plastic bag and incubated at 24 ± 1°C for 2 days. Disease symptoms similar to those described above were observed on 95% of inoculated berries 3 days after inoculation, while no symptoms developed in control berries. Reisolation from the inoculated berries consistently yielded the Alternaria sp. described above. Pathogenicity tests were performed three times. Previously, strawberry fruit rot caused by A. tenuissima was reported from Florida (2) and Malaysia (1), however, to our knowledge, this is the first report of fruit rot of strawberry caused by a species of Alternaria in Taiwan. References: (1) W. D. Cho et al. List of Plant Diseases in Korea. Korean Society of Plant Pathology, 2004. (2) C. M. Howard and E. E. Albregts. Phytopathology 63:938, 1973. (3) R. D. Milholland. Phytopathology 63:1395, 1973.
  3. Ko Y, Liu CW, Chen SS, Chen CY, Yao KS, Maruthasalam S, et al.
    Plant Dis, 2010 Apr;94(4):481.
    PMID: 30754488 DOI: 10.1094/PDIS-94-4-0481B
    During March 2007, a fruit rot disease was observed in several loquat (Eriobotrya japonica (Thunberg) Lindley) fields located in Taichung, Nantou, and Miaoli counties. Loquat is a valuable fruit crop grown predominantly in central Taiwan, and hence, even a minor yield loss by this new disease is economically significant. Symptoms on fruits initially appeared as small lesions (<1 mm) that later developed into light-to-dark brown, circular, larger (7 mm), sunken lesions, indicating invasion of a pathogen into the fruit. Pieces of rotted fruit tissue (1 × 1 × 1 mm) were immersed for 1 min in 3% commercial bleach, followed by 70% ethanol, cultured on potato dextrose agar (PDA), and incubated under constant fluorescent light (185 ± 35 μE·m-2·s-1) at 24°C for 2 days. Three single conidial isolates (AS1 to AS3) were selected and used in morphological and pathogenicity studies. All three isolates were identified as an Alternaria sp. (1-3) and formed abundant, dark brown mycelium when cultured on PDA with light at 24°C. Conidiophores were 60 to 89 × 3 to 5 μm, densely fasciculate, cylindrical, simple or branched, and had distinct conidial scars. Conidia were 12 to 74 × 6 to 14 μm, golden brown, straight or curved, obclavate with beaks measuring half the length of the conidium, and observed in chains of 10 or more spores with four to seven transverse septa and several longitudinal septa. Pathogenicity tests were conducted twice by inoculating eight surface-sterilized wounded or unwounded fruits with each of the three isolates in each experiment. Two cuts (1 × 1 × 1 mm) were made on each fruit 3 cm apart with a sterile scalpel, and a 300-μl spore suspension (2 × 105 conidia per ml) was placed on each wound. Similarly, a 300-μl spore suspension was placed on unwounded fruits and air dried for 5 min. Control fruits were similarly treated with sterile water. Inoculated fruits were enclosed in a plastic bag and kept at 24 ± 1°C. Symptoms of soft rot were observed on 60% (unwounded) and 100% (wounded) of inoculated fruits 5 days after inoculation, while control fruits did not develop disease symptoms. Reisolation from the symptomatic fruits consistently yielded an Alternaria sp. This fungus previously has been reported as the causal agent of fruit rot or black spot of papaya, mango, kiwifruit, pear, and carambola from Australia, India, Malaysia, South Africa, and the United States (1-3). To our knowledge, this is the first report of fruit rot of loquat caused by an Alternaria sp. in Taiwan. To manage this disease, growers may resort to fungicidal sprays followed by bagging of fruits to reduce pre- and postharvest losses. References: (1) A. L. Jones and H. S. Aldwinckle. Compendium of Apple and Pear Diseases. The American Phytopathological Society. St. Paul, MN, 1990. (2) R. C. Ploetz. Diseases of Tropical Fruit Crops. CABI Publishing. Wallingford, Oxfordshire, UK, 2003. (3) R. C. Ploetz et al. Compendium of Tropical Fruit Diseases. The American Phytopathological Society. St. Paul, MN, 1994.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links