T1 lipase is isolated from the palm Geobacillus zalihae strain T1 in Malaysia, functioning as a secreted protein responsible for the catalyzing hydrolysis of long-chain triglycerides into fatty acids and glycerol at high temperatures. In the current study, using 30 ns molecular dynamics simulations at different temperatures, an aqueous activation was detected for T1 lipase. This aqueous activation in T1 lipase was mainly caused by a double-flap movement mechanism. The double flaps were constituted by the hydrophobic helices 6 and 9. Helix 6 employed two major components with the hydrophilic part at the surface and the hydrophobic part inside. In the aqueous solution, the hydrophobic part could provide enough power for helix 6 to move away, driving the protein into an open configuration and exposing the catalytic triad. Our findings could provide structural evidence to support the double-flap movement, revealing the catalytic mechanism for T1 lipase.
In the current study, we used molecular screening and simulation approaches to target I7L protease from monkeypox virus (mpox) from the Traditional Chinese Medicines (TCM) database. Using molecular screening, only four hits TCM27763, TCM33057, TCM34450 and TCM31564 demonstrated better pharmacological potential than TTP6171 (control). Binding of these molecules targeted Trp168, Asn171, Arg196, Cys237, Ser240, Trp242, Glu325, Ser326, and Cys328 residues and may affect the function of I7L protease in in vitro assay. Moreover, molecular simulation revealed stable dynamics, tighter structural packing and less flexible behaviour for all the complexes. We further reported that the average hydrogen bonds in TCM27763, TCM33057, TCM34450 and TCM31564I7L complexes remained higher than the control drug. Finally, the BF energy results revealed -62.60 ± 0.65 for the controlI7L complex, for the TCM27763I7L complex -71.92 ± 0.70 kcal/mol, for the TCM33057I7L complex the BF energy was -70.94 ± 0.70 kcal/mol, for the TCM34450I7L the BF energy was -69.94 ± 0.85 kcal/mol while for the TCM31564I7L complex the BF energy was calculated to be -69.16 ± 0.80 kcal/mol. Although, we used stateoftheart computational methods, these are theoretical insights that need further experimental validation.
Jamestown Canyon virus (JCV) is a deadly viral infection transmitted by various mosquito species. This mosquito-borne virus belongs to Bunyaviridae family, posing a high public health threat in the in tropical regions of the United States causing encephalitis in humans. Common symptoms of JCV include fever, headache, stiff neck, photophobia, nausea, vomiting, and seizures. Despite the availability of resources, there is currently no vaccine or drug available to combat JCV. The purpose of this study was to develop an epitope-based vaccine using immunoinformatics approaches. The vaccine aimed to be secure, efficient, bio-compatible, and capable of stimulating both innate and adaptive immune responses. In this study, the protein sequence of JCV was obtained from the NCBI database. Various bioinformatics methods, including toxicity evaluation, antigenicity testing, conservancy analysis, and allergenicity assessment were utilized to identify the most promising epitopes. Suitable linkers and adjuvant sequences were used in the design of vaccine construct. 50s ribosomal protein sequence was used as an adjuvant at the N-terminus of the construct. A total of 5 CTL, 5 HTL, and 5 linear B cell epitopes were selected based on non-allergenicity, immunological potential, and antigenicity scores to design a highly immunogenic multi-peptide vaccine construct. Strong interactions between the proposed vaccine and human immune receptors, i.e., TLR-2 and TLR-4, were revealed in a docking study using ClusPro software, suggesting their possible relevance in the immunological response to the vaccine. Immunological and physicochemical properties assessment ensured that the proposed vaccine demonstrated high immunogenicity, solubility and thermostability. Molecular dynamics simulations confirmed the strong binding affinities, as well as dynamic and structural stability of the proposed vaccine. Immune simulation suggest that the vaccine has the potential to effectively stimulate cellular and humoral immune responses to combat JCV infection. Experimental and clinical assays are required to validate the results of this study.
The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.
Campylobacter jejuni, gram-negative bacteria, is an infectious agent of foodborne disease-causing bloody diarrhea, abdominal pain, fever, Guillain-Barré syndrome (GBS) and Miller Fisher syndrome in humans. Campylobacter spp. with multidrug resistance to fluoroquinolones, tetracycline, and erythromycin are reported. Hence, an effective vaccine candidate would provide long-term immunity against C. jejuni infections. Thus, we used a subtractive proteomics pipeline to prioritize essential proteins, which impart a critical role in virulence, replication and survival. Five proteins, i.e. Single-stranded DNA-binding protein, UPF0324 membrane protein Cj0999c, DNA translocase FtsK, 50S ribosomal protein L22, and 50S ribosomal protein L1 were identified as virulent proteins and selected for vaccine designing. We reported that the multi-epitopes subunit vaccine based on CTL, HTL and B-cell epitopes combination possess strong antigenic properties and associates no allergenic reaction. Further investigation revealed that the vaccine interacts with the immune receptor (TLR-4) and triggered the release of primary and secondary immune factors. Moreover, the CAI and GC contents obtained through codon optimization were reported to be 0.93 and 53% that confirmed a high expression in the selected vector. The vaccine designed in this study needs further scientific consensus and will aid in managing C. jejuni infections.
Cholera is a severe small intestine bacterial disease caused by consumption of water and food contaminated with Vibrio cholera. The disease causes watery diarrhea leading to severe dehydration and even death if left untreated. In the past few decades, V. cholerae has emerged as multidrug-resistant enteric pathogen due to its rapid ability to adapt in detrimental environmental conditions. This research study aimed to design inhibitors of a master virulence gene expression regulator, HapR. HapR is critical in regulating the expression of several set of V. cholera virulence genes, quorum-sensing circuits and biofilm formation. A blind docking strategy was employed to infer the natural binding tendency of diverse phytochemicals extracted from medicinal plants by exposing the whole HapR structure to the screening library. Scoring function criteria was applied to prioritize molecules with strong binding affinity (binding energy
Because of the essential role of PLpro in the regulation of replication and dysregulation of the host immune sensing, it is considered a therapeutic target for novel drug development. To reduce the risk of immune evasion and vaccine effectiveness, small molecular therapeutics are the best complementary approach. Hence, we used a structure-based drug-designing approach to identify potential small molecular inhibitors for PLpro of SARS-CoV-2. Initial scoring and re-scoring of the best hits revealed that three compounds NPC320891 (2,2-Dihydroxyindene-1,3-Dione), NPC474594 (Isonarciclasine), and NPC474595 (7-Deoxyisonarciclasine) exhibit higher docking scores than the control GRL0617. Investigation of the binding modes revealed that alongside the essential contacts, i.e., Asp164, Glu167, Tyr264, and Gln269, these molecules also target Lys157 and Tyr268 residues in the active site. Moreover, molecular simulation demonstrated that the reported top hits also possess stable dynamics and structural packing. Furthermore, the residues' flexibility revealed that all the complexes demonstrated higher flexibility in the regions 120-140, 160-180, and 205-215. The 120-140 and 160-180 lie in the finger region of PLpro, which may open/close during the simulation to cover the active site and push the ligand inside. In addition, the total binding free energy was reported to be - 32.65 ± 0.17 kcal/mol for the GRL0617-PLpro, for the NPC320891-PLpro complex, the TBE was - 35.58 ± 0.14 kcal/mol, for the NPC474594-PLpro, the TBE was - 43.72 ± 0.22 kcal/mol, while for NPC474595-PLpro complex, the TBE was calculated to be - 41.61 ± 0.20 kcal/mol, respectively. Clustering of the protein's motion and FEL further revealed that in NPC474594 and NPC474595 complexes, the drug was seen to have moved inside the binding cavity along with the loop in the palm region harboring the catalytic triad, thus justifying the higher binding of these two molecules particularly. In conclusion, the overall results reflect favorable binding of the identified hits strongly than the control drug, thus demanding in vitro and in vivo validation for clinical purposes.
Introduction: Hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes are major therapeutic targets of anemia and ischemic/hypoxia diseases. To overcome safety issues, liver failure, and problems associated with on-/off-targets, natural products due to their novel and unique structures offer promising alternatives as drug targets. Methods: In the current study, the Marine Natural Products, North African, South African, East African, and North-East African chemical space was explored for HIF-PHD inhibitors discovery through molecular search, and the final hits were validated using molecular simulation and free energy calculation approaches. Results: Our results revealed that CMNPD13808 with a docking score of -8.690 kcal/mol, CID15081178 with a docking score of -8.027 kcal/mol, CID71496944 with a docking score of -8.48 kcal/mol and CID11821407 with a docking score of -7.78 kcal/mol possess stronger activity than the control N-[(4-hydroxy-8-iodoisoquinolin-3-yl)carbonyl]glycine, 4HG (-6.87 kcal/mol). Interaction analysis revealed that the target compounds interact with Gln239, Tyr310, Tyr329, Arg383 and Trp389 residues, and chelate the active site iron in a bidentate manner in PHD2. Molecular simulation revealed that these target hits robustly block the PHD2 active site by demonstrating stable dynamics. Furthermore, the half-life of the Arg383 hydrogen bond with the target ligands, which is an important factor for PHD2 inhibition, remained almost constant in all the complexes during the simulation. Finally, the total binding free energy of each complex was calculated as CMNPD13808-PHD2 -72.91 kcal/mol, CID15081178-PHD2 -65.55 kcal/mol, CID71496944-PHD2 -68.47 kcal/mol, and CID11821407-PHD2 -62.06 kcal/mol, respectively. Conclusion: The results show the compounds possess good activity in contrast to the control drug (4HG) and need further in vitro and in vivo validation for possible usage as potential drugs against HIF-PHD2-associated diseases.
Amid the ongoing monkeypox outbreak, there is an urgent need for the rapid development of effective therapeutic interventions capable of countering the immune evasion mechanisms employed by the monkeypox virus (MPXV). The evasion strategy involves the binding of the F3L protein to dsRNA, resulting in diminished interferon (IFN) production. Consequently, our current research focuses on utilizing virtual drug screening techniques to target the RNA binding domain of the F3L protein. Out of the 954 compounds within the South African natural compound database, only four demonstrated notable docking scores: -6.55, -6.47, -6.37, and -6.35 kcal/mol. The dissociation constant (KD) analysis revealed a stronger binding affinity of the top hits 1-4 (-5.34, -5.32, -5.29, and -5.36 kcal/mol) with the F3L in the MPXV. All-atom simulations of the top-ranked hits 1 to 4 consistently exhibited stable dynamics, suggesting their potential to interact effectively with interface residues. This was further substantiated through analyses of parameters such as radius of gyration (Rg), Root Mean Square Fluctuation, and hydrogen bonding. Cumulative assessments of binding free energy confirmed the top-performing candidates among all the compounds, with values of -35.90, -52.74, -28.17, and -32.11 kcal/mol for top hits 1-4, respectively. These results indicate that compounds top hit 1-4 could hold significant promise for advancing innovative drug therapies, suggesting their suitability for both in vivo and in vitro experiments.
The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.
Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to over six million deaths worldwide. In human immune system, the type 1 interferon (IFN) pathway plays a crucial role in fighting viral infections. However, the ORF8 protein of the virus evade the immune system by interacting with IRF3, hindering its nuclear translocation and consequently downregulate the type I IFN signaling pathway. To block the binding of ORF8-IRF3 and inhibit viral pathogenesis a quick discovery of an inhibitor molecule is needed. Therefore, in the present study, the interface between the ORF8 and IRF3 was targeted on a high-affinity carbon nanotube by using computational tools. After analysis of 62 carbon nanotubes by multiple docking with the induced fit model, the top five compounds with high docking scores of - 7.94 kcal/mol, - 7.92 kcal/mol, - 7.28 kcal/mol, - 7.19 kcal/mol and - 7.09 kcal/mol (top hit1-5) were found to have inhibitory activity against the ORF8-IRF3 complex. Molecular dynamics analysis of the complexes revealed the high compactness of residues, stable binding, and strong hydrogen binding network among the ORF8-nanotubes complexes. Moreover, the total binding free energy for top hit1-5 was calculated to be - 43.21 ± 0.90 kcal/mol, - 41.17 ± 0.99 kcal/mol, - 48.85 ± 0.62 kcal/mol, - 43.49 ± 0.77 kcal/mol, and - 31.18 ± 0.78 kcal/mol respectively. These results strongly suggest that the identified top five nanotubes (hit1-5) possess significant potential for advancing and exploring innovative drug therapies. This underscores their suitability for subsequent in vivo and in vitro experiments, marking them as promising candidates worthy of further investigation.
A new variant of SARS-CoV-2 known as the omicron variant (B.1.1.529) reported in South Africa with 30 mutations in the whole spike protein, among which 15 mutations are in the receptor-binding domain, is continuously spreading exponentially around the world. The omicron variant is reported to be highly contagious with antibody-escaping activity. The emergence of antibody-escaping variants is alarming, and thus the quick discovery of small molecule inhibitors is needed. Hence, the current study uses computational drug screening and molecular dynamics simulation approaches (replicated) to identify novel drugs that can inhibit the binding of the receptor-binding domain (RBD) with hACE2. Screening of the North African, East African and North-East African medicinal compound databases by employing a multi-step screening approach revealed four compounds, namely (-)-pipoxide (C1), 2-(p-hydroxybenzyl) benzofuran-6-ol (C2), 1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol (C3), and Rhein (C4), with excellent anti-viral properties against the RBD of the omicron variant. Investigation of the dynamics demonstrates stable behavior, good residue flexibility profiles, and structural compactness. Validation of the top hits using computational bioactivity analysis, binding free energy calculations and dissociation constant (K D) analysis also indicated the anti-viral properties of these compounds. In conclusion, this study will help in the design and discovery of novel drug therapeutics, which may be used against the emerging omicron variant of SARS-CoV-2.
The spike protein of SARS-CoV-2 and the host ACE2 receptor plays a vital role in the entry to the cell. Among which the hotspot residue 501 is continuously subjected to positive selection pressure and induces unusual virulence. Keeping in view the importance of the hot spot residue 501, we predicted the potentially emerging structural variants of 501 residue. We analyzed the binding pattern of wild type and mutants (Spike RBD) to the ACE2 receptor by deciphering variations in the amino acids' interaction networks by graph kernels along with evolutionary, network metrics, and energetic information. Our analysis revealed that N501I, N501T, and N501V increase the binding affinity and alter the intra and inter-residue bonding networks. The N501T has shown strong positive selection and fitness in other animals. Docking results and repeated simulations (three times) confirmed the structural stability and tighter binding of these three variants, correlated with the previous results following the global stability trend. Consequently, we reported three variants N501I, N501T, and N501V could worsen the situation further if they emerged. The relations between the viral fitness and binding affinity is a complicated game thus the emergence of high affinity mutations in the SARS-CoV-2 RBD brings up the question of whether or not positive selection favours these mutations or not?