Displaying all 5 publications

Abstract:
Sort:
  1. Al Madfai F, Zaidi STR, Ming LC, Wanandy T, Patel RP
    Eur J Hosp Pharm, 2018 Oct;25(e2):e115-e119.
    PMID: 31157080 DOI: 10.1136/ejhpharm-2017-001221
    Background: Severe infections such as endocarditis and osteomyelitis require long-term treatment with parenteral antibiotics and hence prolonged hospitalisation. Continuous infusion of ceftaroline through elastomeric devices can facilitate early hospital discharge by managing parenteral antibiotics in patient's home. Therefore, the purpose of this study was to investigate the stability of ceftaroline in a commonly used elastomeric device.

    Method: A total of 24 elastomeric devices were prepared, and six elastomeric devices containing 6mg/mL of ceftaroline (three in each type of diluents) were stored at one of the following conditions: 4°C for 6 days, 25°C for 24hours, 30°C for 24hours or 35°C for 24hours. An aliquot was withdrawn before storage and at different time points. Chemical stability was measured using a stability indicating high-performance liquid chromatography, and physical stability was assessed as change in pH, colour and particle content.

    Results: Ceftaroline, when admixed with both diluents, was stable for 144, 24 and 12hours at 4°C, 25°C and 30°C, respectively. At 35°C, ceftaroline admixed with normal saline (NS) and glucose 5% was stable for 12hours and for 6hours, respectively. No evidence of particle formation, colour change or pH change was observed throughout the study period.

    Conclusions: Our findings support 12 or 24hours continuous elastomeric infusion of ceftaroline-NS admixture, and bulk preparation of elastomeric pumps containing ceftaroline solution in advance. This would facilitate early hospital discharge of patients eligible for the elastomeric-based home therapy and avoid the need for patient's caregivers travelling to the hospital on a daily basis.

  2. Khaleel I, Zaidi STR, Shastri MD, Eapen MS, Ming LC, Wanandy T, et al.
    Eur J Hosp Pharm, 2018 Oct;25(e2):e102-e108.
    PMID: 31157078 DOI: 10.1136/ejhpharm-2017-001225
    Objectives: High dose of intravenous sulfamethoxazole and trimethoprim (co-trimoxazole) is often used in immunocompromised patients for the treatment of Pneumocystis jiroveci pneumonia. Current manufacturer's dilution recommendation for intravenous co-trimoxazole (1:25 v/v) requires the administration of 2 L of additional fluid per day causing serious complications including pulmonary oedema. Intravenous administration of concentrated solution of co-trimoxazole may minimise the risk of fluid overload associated side effects. Therefore, the objective of the study was to investigate the physicochemical stability of concentrated intravenous co-trimoxazole solutions.

    Methods: Four ampoules of intravenous co-trimoxazole were injected into an infusion bag containing either 480 (1:25 v/v), 380 (1:20 v/v), 280 (1:15 v/v) or 180 (1:10 v/v) mL of glucose 5% solution. Three bags for each dilution (total 12 bags) were prepared and stored at room temperature. An aliquot was withdrawn immediately (at 0 hour) and after 0.5, 1, 2 and 4 hours of storage for high-performance liquid-chromatography (HPLC) analysis, and additional samples were withdrawn every half an hour for microscopic examination. Each sample was analysed for the concentration of trimethoprim and sulfamethoxazole using a stability indicating HPLC method. Samples were assessed for pH, change in colour (visually) and for particle content (microscopically) immediately after preparation and on each time of analysis.

    Results: Intravenous co-trimoxazole at 1:25, 1:20, 1:15 and 1:10 v/v retained more than 98% of the initial concentration of trimethoprim and sulfamethoxazole for 4 hours. There was no major change in pH at time zero and at various time points. Microscopically, no particles were detected for at least 4 hours and 2 hours when intravenous co-trimoxazole was diluted at 1:25 or 1:20 and 1:15 v/v, respectively. More than 1200 particles/mL were detected after 2.5 hours of storage when intravenous co-trimoxazole was diluted at 1:15 v/v.

    Conclusions: Intravenous co-trimoxazole is stable over a period of 4 hours when diluted with 380 mL of glucose 5% solution (1:20 v/v) and for 2 hours when diluted with 280 mL glucose 5% solution (1:15 v/v).

  3. Patel RP, Jacob J, Sedeeq M, Ming LC, Wanandy T, Zaidi STR, et al.
    Clin Ther, 2018 04;40(4):664-667.
    PMID: 29496321 DOI: 10.1016/j.clinthera.2018.02.009
    PURPOSE: The aim was to investigate the stability of cefazolin in elastomeric infusion devices.

    METHODS: Elastomeric devices (Infusor LV) that contain cefazolin (3 g/240 mL and 6 g/240 mL) were prepared and stored at 4°C for 72 hours and then at 35°C for 12 hours, followed by 25°C for 12 hours. An aliquot was withdrawn at predefined time points and analyzed for the concentration of cefazolin. Samples were also assessed for changes in pH, solution color, and particle content.

    FINDINGS: Cefazolin retained acceptable chemical and physical stability over the studied storage period and conditions.

    IMPLICATIONS: These findings will allow the administration of cefazolin by the Infusor LV elastomeric device in the outpatient and remote settings.

  4. Al Madfai F, Valah B, Zaidi STR, Wanandy T, Ming LC, Peterson GM, et al.
    J Clin Pharm Ther, 2018 Aug;43(4):530-535.
    PMID: 29500838 DOI: 10.1111/jcpt.12674
    WHAT IS KNOWN AND OBJECTIVE: Continuous infusion of dobutamine plays an important role in the management of patients with end-stage heart failure. Home infusion of dobutamine using a continuous ambulatory delivery device (CADD) facilitates the management of patients in their home, avoiding complications associated with long-term hospitalization. However, the stability of dobutamine in CADD is currently unknown. Therefore, this study investigated the physicochemical stability of dobutamine in CADDs at three different temperatures over various time points.

    METHODS: Six CADDs (three containing dobutamine 10 mg/mL in 0.9% sodium chloride and three containing dobutamine 10 mg/mL in 5% glucose) were prepared and stored at 4°C for 7 days, followed by 12 hours at 35°C and then for another 12 hours at 25°C. An aliquot (n = 3) was withdrawn aseptically at 0, 24, 48, 72, 96, 120, 144 and 168 hours when stored at 4°C, and at 0, 6 and 12 hours when stored at the other two temperatures. Each sample was analysed for dobutamine concentration using a stability-indicating high-performance liquid chromatography. All the samples were also evaluated for change in pH, colour and for particle content.

    RESULTS AND DISCUSSION: No evidence of particle formation, colour or pH change was observed throughout the study period. Dobutamine, when admixed with 0.9% sodium chloride or 5% glucose, was found to be chemically stable for at least 168 hours at 4°C and for another 12 hours at 35°C and for another 12 hours at 25°C.

    WHAT IS NEW AND CONCLUSIONS: Our findings will allow health professionals to provide a weekly supply of dobutamine-containing CADDs to patients for home infusions. Continuous infusion over a 24-hour period using one CADD per day will also decrease the number of exchanges required and thus reduce the risk of catheter-related bloodstream infections.

  5. Mendes K, Harmanjeet H, Sedeeq M, Modi A, Wanandy T, Zaidi STR, et al.
    Perit Dial Int, 2018 07 10;38(6):430-440.
    PMID: 29991562 DOI: 10.3747/pdi.2017.00274
    BACKGROUND: Infections caused by ceftazidime-resistant Pseudomonas and extended-spectrum beta-lactamase (ESBL)-producing gram-negative bacteria are increasing worldwide. Meropenem and piperacillin/tazobactam (PIP/TZB) are recommended for the treatment of peritoneal dialysis-associated peritonitis (PDAP) caused by ceftazidime-resistant Pseudomonas and other resistant gram-negative bacteria. Patients may also receive intraperitoneal heparin to prevent occlusion of their catheters. However, the stability of meropenem or PIP/TZB, in combination with heparin, in different types of peritoneal dialysis (PD) solutions used in clinical practice is currently unknown. Therefore, we investigated the stability of meropenem and PIP/TZB, each in combination with heparin, in different PD solutions.

    METHODS: A total of 15 PD bags (3 bags for each type of PD solution) containing meropenem and heparin and 24 PD bags (3 bags for each type of PD solution) containing PIP/TZB and heparin were prepared and stored at 4°C for 168 hours. The same bags were stored at 25°C for 3 hours followed by 10 hours at 37°C. An aliquot withdrawn before storage and at defined time points was analyzed for the concentration of meropenem, PIP, TZB, and heparin using high-performance liquid chromatography. Samples were also analysed for particle content, pH and color change, and the anticoagulant activity of heparin.

    RESULTS: Meropenem and heparin retained more than 90% of their initial concentration in 4 out of 5 types of PD solutions when stored at 4°C for 168 hours, followed by storage at 25°C for 3 hours and then at 37°C for 10 hours. Piperacillin/tazobactam and heparin were found to be stable in all 8 types of PD solutions when stored under the same conditions. Heparin retained more than 98% of its initial anticoagulant activity throughout the study period. No evidence of particle formation, color change, or pH change was observed at any time under the storage conditions employed in the study.

    CONCLUSIONS: This study provides clinically important information on the stability of meropenem and PIP/TZB, each in combination with heparin, in different PD solutions. The use of meropenem-heparin admixed in pH-neutral PD solutions for the treatment of PDAP should be avoided, given the observed suboptimal stability of meropenem.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links