Vibrational behaviour of symmetric angle-ply layered circular cylindrical shell filled with quiescent fluid is presented. The equations of motion of cylindrical shell in terms of stress and moment resultants are derived from the first order shear deformation theory. Irrotational of inviscid fluid are expressed as the wave equation. These two equations are coupled. Strain-displacement relations and stress-strain relations are adopted into the equations of motion to obtain the differential equations with displacements and rotational functions. A system of ordinary differential equation is obtained in one variable by assuming the functions in separable form. Spline of order three is applied to approximate the displacement and rotational functions, together with boundary conditions, to get a generalised eigenvalue problem. The eigenvalue problem is solved for eigen frequency parameter and associate eigenvectors of spline coefficients. The study of frequency parameters are analysed using the parameters the thickness ratio, length ratio, angle-ply, properties of material and number of layers under different boundary conditions.
We have presented a detailed analysis of the phase transition kinetics and binding energy states of solution processed methylammonium lead iodide (MAPbI3) thin films prepared at ambient conditions and annealed at different elevated temperatures. It is the processing temperature and environmental conditions that predominantly control the crystal structure and surface morphology of MAPbI3 thin films. The structural transformation from tetragonal to cubic occurs at 60 °C with a 30 minute annealing time while the 10 minute annealed films posses a tetragonal crystal structure. The transformed phase is greatly intact even at the higher annealing temperature of 150 °C and after a time of 2 hours. The charge transfer interaction between the Pb 4f and I 3d oxidation states is quantified using XPS.