Displaying all 2 publications

Abstract:
Sort:
  1. Vijayam B, Supriyanto E, Malarvili MB
    Front Digit Health, 2021;3:723204.
    PMID: 34778867 DOI: 10.3389/fdgth.2021.723204
    The study of carbon dioxide expiration is called capnometry. The graphical representation of capnometry is called capnography. There is a growing interest in the usage of capnography as the usage has expanded toward the study of metabolism, circulation, lung perfusion and diffusion, quality of spontaneous respiration, and patency of airways outside of its typical usage in the anesthetic and emergency medicine field. The parameters of the capnograph could be classified as carbon dioxide (CO2) concentration and time points and coordinates, slopes angle, volumetric studies, and functional transformation of wave data. Up to date, there is no gold standard device for the calculation of the capnographic parameters. Capnography digitization using the image processing technique could serve as an option. From the algorithm we developed, eight identical breath waves were tested by four investigators. The values of the parameters chosen showed no significant difference between investigators. Although there were no significant differences between any of the parameters tested, there were a few related parameters that were not calculable. Further testing after refinement of the algorithm could be done. As more capnographic parameters are being derived and rediscovered by clinicians and researchers alike for both lung and non-lung-related diseases, there is a dire need for data analysis and interpretation. Although the proposed algorithm still needs minor refinements and further large-scale testing, we proposed that the digitization of the capnograph via image processing technique could serve as an intellectual option as it is fast, convenient, easy to use, and efficient.
  2. Vijayam B, Malarvili MB, Md Shakhih MF, Omar N, Wahab AA
    Clin Nutr ESPEN, 2021 04;42:124-131.
    PMID: 33745565 DOI: 10.1016/j.clnesp.2021.02.005
    BACKGROUND & AIMS: Previous studies have shown that end-tidal carbon dioxide (EtCO2) is lower with the presence of supraphysiological ketones as in the case of chronic ketogenic diet (KD) and diabetic ketoacidosis (DKA). This study aimed to determine changes in EtCO2 upon short term KD.

    METHODS: Healthy subjects were screened not to have conditions that exerts abnormal EtCO2 nor contraindicated for KD. Subjects underwent seven days of KD while the EtCO2 and blood ketone (beta-hydroxybutyrate; β-OHB) parameters were sampled at day zero (t0) and seven (t7) of ketosis respectively. Statistically, the t-test and Pearson's coefficient were conducted to determine the changes and correlation of both parameters.

    RESULTS: 12 subjects completed the study. The mean score ± standard deviation (SD) for EtCO2 were 35.08 ± 3.53 and 35.67 ± 3.31 mm Hg for t0 and t7 respectively. The mean score ±SD for β-OHB were 0.07 ± 0.08 and 0.87 ± 0.84 mmol/L for t0 and t7 respectively. There was no significant difference of EtCO2 between the period of study (p > 0.05) but the β-OHB increased during t7 (p 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links