Displaying all 8 publications

Abstract:
Sort:
  1. Rosli NA, Teow YH, Mahmoudi E
    Sci Technol Adv Mater, 2021;22(1):885-907.
    PMID: 34675754 DOI: 10.1080/14686996.2021.1978801
    Infectious diseases of bacterial and viral origins contribute to substantial mortality worldwide. Collaborative efforts have been underway between academia and the industry to develop technologies for a more effective treatment for such diseases. Due to their utility in various industrial applications, nanoparticles (NPs) offer promising potential as antimicrobial agents against bacterial and viral infections. NPs have been established to possess potent antimicrobial activities against various types of pathogens due to their unique characteristics and cell-damaging ability through several mechanisms. The recently accepted antimicrobial mechanisms possessed by NPs include metal ion release, oxidative stress induction, and non-oxidative mechanisms. Another merit of NPs lies in the low likelihood of the development of microbial tolerance towards NPs, given the multiple simultaneous mechanisms of action against the pathogens targeting numerous gene mutations in these pathogens. Moreover, NPs provide a fascinating opportunity to curb microbial growth before infections: this outstanding feature has led to their utilization as active antimicrobial agents in different industrial applications, e.g. the coating of medical devices, incorporation in food packaging, promoting wound healing and encapsulation with other potential materials for wastewater treatment. This review discusses the progress and achievements in the antimicrobial applications of NPs, factors contributing to their actions, mechanisms underlying their efficiency, and risks of their applications, including the antimicrobial action of metal nanoclusters (NCs). The review concludes with a discussion of the restrictions on present studies and future prospects of nanotechnology-based NPs development.
  2. Teow YH, Zulkifli E, Wikramasinghe SR
    Water Sci Technol, 2023 Mar;87(5):1056-1071.
    PMID: 36919733 DOI: 10.2166/wst.2023.034
    This research aims to evaluate the performance of PolyCera® Titan membrane for different wastewater treatment. Membrane filtration of several cycles was conducted in understanding the fouling mechanism, fouling propensity, and defouling potential of the PolyCera® Titan which had not been studied by any other researcher before. The PolyCera® Titan membrane is effective for the treatment of textile industry wastewater, palm oil mill effluent (POME), leachate, and semiconductor-industry wastewater. Rejection of methylene blue (MB) and Congo red (CR) was in the range of 78.76-86.04% and 88.89-93.71%, respectively; 94.72-96.50% NaCl, 96.07-97.62% kaolin, and 97.26-97.73% glucose were rejected from synthetic leachate indicating the removal of TDS, TSS, and COD from the leachate, respectively. Standard blocking and complete model were the best models used to explain the PolyCera® Titan membrane fouling mechanism in all types of wastewater treatment processes with a high R2 value. Physical cleaning with the use of distilled water was able to recover the permeate flux with the flux recovery ratio (FRR) value in the range of 79.2-95.22% in the first cycle, 81.20-98.16% in the second cycle, and 86.09-95.96% in the third cycle.
  3. Teow YH, Nordin NI, Mohammad AW
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33747-33757.
    PMID: 29754300 DOI: 10.1007/s11356-018-2189-6
    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
  4. Al-Rajabi MM, Teow YH
    Polymers (Basel), 2021 Jun 29;13(13).
    PMID: 34210003 DOI: 10.3390/polym13132153
    Drug delivery is a difficult task in the field of dermal therapeutics, particularly in the treatment of burns, wounds, and skin diseases. Conventional drug delivery mediums have some limitations, including poor retention on skin/wound, inconvenience in administration, and uncontrolled drug release profile. Hydrogels able to absorb large amount of water and give a spontaneous response to stimuli imposed on them are an attractive solution to overcome the limitations of conventional drug delivery media. The objective of this study is to explore a green synthesis method for the development of thermo-responsive cellulose hydrogel using cellulose extracted from oil palm empty fruit bunches (OPEFB). A cold method was employed to prepare thermo-responsive cellulose hydrogels by incorporating OPEFB-extracted cellulose and Pluronic F127 (PF127) polymer. The performance of the synthesized thermo-responsive cellulose hydrogels were evaluated in terms of their swelling ratio, percentage of degradation, and in-vitro silver sulfadiazine (SSD) drug release. H8 thermo-responsive cellulose hydrogel with 20 w/v% PF127 and 3 w/v% OPEFB extracted cellulose content was the best formulation, given its high storage modulus and complex viscosity (81 kPa and 9.6 kPa.s, respectively), high swelling ratio (4.22 ± 0.70), and low degradation rate (31.3 ± 5.9%), in addition to high t50% value of 24 h in SSD in-vitro drug release to accomplish sustained drug release. The exploration of thermo-responsive cellulose hydrogel from OPEFB would promote cost-effective and sustainable drug delivery system with using abundantly available agricultural biomass.
  5. Ho KC, Teoh YX, Teow YH, Mohammad AW
    J Environ Manage, 2021 Jan 01;277:111434.
    PMID: 33045646 DOI: 10.1016/j.jenvman.2020.111434
    This study assessed the environmental impacts of the formulation of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) conductive membranes and of the process operating parameters of electrically-enhanced palm oil mill effluent (POME) filtration. Two different analyses approaches were employed, cradle-to-gate approach for conductive membrane production and gate-to-gate approach for the POME filtration process. The parameters in conductive-membrane formulation (e.g. the weight ratio of carbon nanomaterials, and concentration of GO/MWCNT nanohybrids) and process operating parameters (e.g. electric field strength and electricity operating mode) were investigated. The findings herein are twofold. Firstly, for the fabrication of GO/MWCNT conductive membranes, the best weight ratio of GO:MWCNTs was found to be 1:9, given its superior membrane electrical conductivity with lower environmental impacts by 8.51% compared to pristine MWCNTs. The most suitable concentration of carbon nanomaterials was found to be 5 wt%, given its lowest impacts on resource depletion, human health, and ecosystems. Secondly, for the electrically-enhanced POME filtration, the optimum process operating parameters were found to be the application of an electric field of 300 V/cm in the continuous mode, given its lower environmental impacts (22.99%-89.30%) secondary to its requirement of the least electricity to produce permeate. The present study has established not only the optimized conditions in membrane formulation but also the operating parameters of electrically-enhanced filtration; such findings enable the use of cleaner production and sustainable approach to minimize fouling for industrial applications, whilst maintaining excellent efficiency.
  6. Teow YH, Ooi BS, Ahmad AL, Lim JK
    Membranes (Basel), 2020 Dec 24;11(1).
    PMID: 33374274 DOI: 10.3390/membranes11010016
    Natural organic matters (NOMs) have been found to be the major foulant in the application of ultrafiltration (UF) for treating surface water. Against this background, although hydrophilicity has been demonstrated to aid fouling mitigation, other parameters such as membrane surface morphology may contribute equally to improved fouling resistance. In this work, with humic acid solution as the model substance, the effects of titanium dioxides (TiO2) types (PC-20, P25, and X500) on membrane anti-fouling and defouling properties were comparatively analysed. The aims are (1) to determine the correlation between membrane surface morphology and membrane fouling and (2) to investigate the anti-fouling and UV-cleaning abilities of PVDF/TiO2 mixed-matrix membranes with different membrane topographies and surface energy conditions. The mixed-matrix membrane with P25 TiO2 exhibited the most significant UV-defouling ability, with a high irreversible flux recovery ratio (IFRR(UV)) of 16.56 after 6 h of UV irradiation, whereas that with X500 TiO2 exhibited both superior anti-fouling and defouling properties due to its smoother surface and its highly reactive surface layer.
  7. Ho KC, Teow YH, Sum JY, Ng ZJ, Mohammad AW
    Sci Total Environ, 2021 Mar 15;760:143966.
    PMID: 33341611 DOI: 10.1016/j.scitotenv.2020.143966
    Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.
  8. Salleh A, Mustafa N, Teow YH, Fatimah MN, Khairudin FA, Ahmad I, et al.
    Biomedicines, 2022 Mar 31;10(4).
    PMID: 35453566 DOI: 10.3390/biomedicines10040816
    Tissue engineering products have grown rapidly as an alternative solution available for chronic wound and burn treatment. However, some drawbacks include additional procedures and a lack of antibacterial properties that can impair wound healing, which are issues that need to be tackled effectively for better wound recovery. This study aimed to develop a functionalized dual-layered hybrid biomatrix composed of collagen sponge (bottom layer) to facilitate cell proliferation and adhesion and gelatin/cellulose hydrogel (outer layer) incorporated with graphene oxide and silver nanoparticles (GC-GO/AgNP) to prevent possible external infections post-implantation. The bilayer hybrid scaffold was crosslinked with 0.1% (w/v) genipin for 6 h followed by advanced freeze-drying technology. Various characterisation parameters were employed to investigate the microstructure, biodegradability, surface wettability, nanoparticles antibacterial activity, mechanical strength, and biocompatibility of the bilayer bioscaffold towards human skin cells. The bilayer bioscaffold exhibited favourable results for wound healing applications as it demonstrated good water uptake (1702.12 ± 161.11%), slow rate of biodegradation (0.13 ± 0.12 mg/h), and reasonable water vapour transmission rate (800.00 ± 65.85 gm−2 h−1) due to its porosity (84.83 ± 4.48%). The biomatrix was also found to possess hydrophobic properties (48.97 ± 3.68°), ideal for cell attachment and high mechanical strength. Moreover, the hybrid GO-AgNP promoted antibacterial properties via the disk diffusion method. Finally, biomatrix unravelled good cellular compatibility with human dermal fibroblasts (>90%). Therefore, the fabricated bilayer scaffold could be a potential candidate for skin wound healing application.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links