Displaying all 4 publications

Abstract:
Sort:
  1. Sugau JB, van der Ent A
    Bot Stud, 2015 Dec;57(1):4.
    PMID: 28510789 DOI: 10.1186/s40529-016-0119-9
    BACKGROUND: Kinabalu Park, in Sabah (Malaysia) on Borneo Island, is renowned for the exceptionally high plant diversity it protects, with at least 5000 plant species enumerated to date. Discoveries of plant novelties continue to be made in Sabah, especially on isolated ultramafic outcrops, including in the genus Pittosporum (Pittosporaceae) with P. linearifolium from Bukit Hampuan on the southern border of the Park, and P. silamense from Bukit Silam in Eastern Sabah, both narrow endemics restricted to ultramafic soils.

    RESULTS: A distinctive new species of Pittosporum (P. peridoticola J.B.Sugau and Ent, sp. nov.) was discovered on Mount Tambuyukon in the north of Kinabalu Park during ecological fieldwork. The diagnostic morphological characters of this taxon are discussed and information about the habitat in which it grows is provided. The soil chemistry in the rooting zone of P. peridoticola has high magnesium to calcium quotients, high extractable nickel and manganese concentrations, but low potassium and phosphorus concentrations, as is typical for ultramafic soils. Analysis of foliar samples of various Pittosporum-species originating from ultramafic and non-ultramafic soils showed a comparable foliar elemental stoichiometry that is suggestive of 'Excluder-type' ecophysiology.

    CONCLUSION: Pittosporum peridoticola is an ultramafic obligate species restricted to Kinabalu Park with only two known populations within the boundaries of the protected area. It is vulnerable to any future stochastic landscape disturbance events, such as forest fires or severe droughts, and therefore its conservation status is 'Near Threatened'.

  2. Lopez S, van der Ent A, Sumail S, Sugau JB, Buang MM, Amin Z, et al.
    Environ Microbiol, 2020 04;22(4):1649-1665.
    PMID: 32128926 DOI: 10.1111/1462-2920.14970
    The Island of Borneo is a major biodiversity hotspot, and in the Malaysian state of Sabah, ultramafic soils are extensive and home to more than 31 endemic nickel hyperaccumulator plants. The aim of this study was to characterize the structure and the diversity of the rhizosphere bacterial communities of several of these nickel hyperaccumulator plants and factors that affect these bacterial communities in Sabah. The most abundant phyla were Proteobacteria, Acidobacteria and Actinobacteria. At family level, Burkholderiaceae and Xanthobacteraceae (Proteobacteria phylum) were the most abundant families in the hyperaccumulator rhizospheres. Redundancy analysis based on soil chemical analyses and relative abundances of the major bacterial phyla showed that abiotic factors of the studied sites drove the bacterial diversity. For all R. aff. bengalensis rhizosphere soil samples, irrespective of studied site, the bacterial diversity was similar. Moreover, the Saprospiraceae family showed a high representativeness in the R. aff. bengalensis rhizosphere soils and was linked with the nickel availability in soils. The ability of R. aff. bengalensis to concentrate nickel in its rhizosphere appears to be the major factor driving the rhizobacterial community diversity unlike for other hyperaccumulator species.
  3. Williams SH, Scriven SA, Burslem DFRP, Hill JK, Reynolds G, Agama AL, et al.
    Conserv Biol, 2020 08;34(4):934-942.
    PMID: 31840279 DOI: 10.1111/cobi.13450
    Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.
  4. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, et al.
    Nature, 2015 Aug 20;524(7565):347-50.
    PMID: 26266979 DOI: 10.1038/nature14949
    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links