Displaying all 2 publications

Abstract:
Sort:
  1. Hossain M, Mekhilef S, Afifi F, Halabi LM, Olatomiwa L, Seyedmahmoudian M, et al.
    PLoS One, 2018;13(4):e0193772.
    PMID: 29702645 DOI: 10.1371/journal.pone.0193772
    In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations.
  2. Khalid H, Mekhilef S, Siddique MD, Wahyudie A, Ahmed M, Seyedmahmoudian M, et al.
    PLoS One, 2023;18(1):e0277331.
    PMID: 36638108 DOI: 10.1371/journal.pone.0277331
    Most silicon carbide (SiC) MOSFET models are application-specific. These are already defined by the manufacturers and their parameters are mostly partially accessible due to restrictions. The desired characteristic of any SiC model becomes highly important if an individual wants to visualize the impact of changing intrinsic parameters as well. Also, it requires a model prior knowledge to vary these parameters accordingly. This paper proposes the parameter extraction and its selection for Silicon Carbide (SiC) power N-MOSFET model in a unique way. The extracted parameters are verified through practical implementation with a small-scale high power DC-DC 5 to 2.5 output voltage buck converter using both hardware and software emphasis. The parameters extracted using the proposed method are also tested to verify the static and dynamic characteristics of SiC MOSFET. These parameters include intrinsic, junction and overlapping capacitance. The parameters thus extracted for the SiC MOSFET are analyzed by device performance. This includes input, output transfer characteristics and transient delays under different temperature conditions and loading capabilities. The simulation and experimental results show that the parameters are highly accurate. With its development, researchers will be able to simulate and test any change in intrinsic parameters along with circuit emphasis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links