Phage display is a technique that allows the presentation of unique proteins on the surface of bacteriophages. The phage particles are usually screened via repetitive rounds of antigen-guided selection and phage amplification. The main advantage of this approach lies in the physical linkage between phenotype and genotype. This feature allows the isolation of single unique clones from a panning campaign consisting of a highly diverse population of clones. Due to the high-throughput nature of this technique, different approaches have been developed to assist phage display selections. One of which involves utilizing a streptavidin-coated solid-phase extraction (SPE) tip that is mounted to an electronically controlled motorized multichannel pipette. In this chapter, we will entail the procedures involved in the adaptation of a commercial SPE tip (MSIA™ streptavidin D.A.R.T's®) as the solid phase. This protocol is an updated version of a previous protocol with some minor refinements.
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Phage display antibody libraries have been successfully used as the essential tool to produce monoclonal antibodies against a plethora of targets ranging from diseases to native biologically important proteins as well as small molecules. It is well documented that diverse antibody genes are the major genetic source for the construction of a high-quality antibody library and selection of high-affinity antibodies. Naïve antibody libraries are derived using the IgM repertoire of healthy donors obtained from B-cells isolated from human peripheral blood mononuclear cell (PBMC). Single-chain fragment variable (scFv) is a routinely used format due to its smaller size and preference for phage display. The process involves the use of a two-step cloning method for library construction. The protocol also covers the biopanning process for target positive clone selection.
Ancylostoma species are parasitic nematodes that release a multitude of proteins to manipulate host immune responses to facilitate their survival. Among the released proteins, Ancylostoma-secreted protein 5 (ASP5) plays a pivotal role in mediating host-parasite interactions, making it a promising target for interventions against canine hookworm infections caused by Ancylostoma species. Antibody phage display, a widely used method for generating human monoclonal antibodies was employed in this study. A bacterial expression system was used to produce ASP5 for biopanning. A single-chain fragment variable (scFv) monoclonal antibody against ASP5 was generated from the naïve Human AntibodY LibrarY (HAYLY). The resulting scFv antibody was characterized to elucidate its antigen-binding properties. The identified monoclonal antibody showed good specificity and binding characteristics which highlighting its potential for diagnostic applications in combating hookworm infections.