Displaying all 2 publications

Abstract:
Sort:
  1. Azeem W, Shahzad MK, Wong YH
    Heliyon, 2024 Jan 15;10(1):e23818.
    PMID: 38205339 DOI: 10.1016/j.heliyon.2023.e23818
    Perovskite materials are the well-known of solar cell applications and have excellent characteristics to study and explain the photocatalytic research. Exchange generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof-PBE correlation functionals and density functional theory (DFT)-based Cambridge Serial Total Energy Package (CASTEP) software are used to inspect the structural, electrical, mechanical, and the optical aspects of Zinc-based cubic perovskite RbZnO3. The compound is found to be in a stable cubic phase according to our study. The predicted elastic characteristics also satisfy the mechanical criterion for stability. Pugh's criterion indicates that RbZnO3 is brittle. The examination shows that the electronic band structure, RbZnO3 possesses an indirect bandgap (BG) that has 4.23eV. Findings of BG analysis agree with currently available evidence. Total and partial density of states (DOS) are used in the confirmation of degree of a localized electrons in special band. Optical transitions in compound are evaluated by adjusting damping ratio for the appropriate peaks of the notional dielectric functions. On one hand, the material is a semiconductor at absolute zero. On the other hand, the dielectric function's fictitious element dispersion illustrates the wide range of values for energy transparency. This substance might therefore be used in a solar cell to capture ultraviolet light.
  2. Shahzad MK, Hussain S, Farooq MU, Laghari RA, Bilal MH, Khan SA, et al.
    Heliyon, 2023 Feb;9(2):e13687.
    PMID: 36873152 DOI: 10.1016/j.heliyon.2023.e13687
    Perovskite materials play a vital role in the field of material science via experimental as well as theoretical calculations. Radium semiconductor materials are considered the backbone of medical fields. These materials are considered in high technological fields to be used as controlling the decay ability. In this study, radium-based cubic fluoro-perovskite XRaF3 (where X = Rb and Na) are calculated using a DFT (density functional theory). These compounds are cubic nature with 221 space groups that construct on CASTEP (Cambridge-serial-total-energy-package) software with ultra-soft PPPW (pseudo-potential plane-wave) and GGA (Generalized-Gradient-approximation)-PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional. The structural, optical, electronic, and mechanical properties of the compounds are calculated. According to the structural properties, NaRaF3 and RbRaF3 have a direct bandgap with 3.10eV and 4.187eV of NaRaF3 and RbRaF3, respectively. Total density of states (DOS) and partial density of states (PDOS) provide confirmation to the degree of electrons localized in distinct bands. NaRaF3 material is semiconductors and RbRaF3 is insulator, according to electronic results. The imaginary element dispersion of the dielectric function reveals its wide variety of energy transparency. In both compounds, the optical transitions are examined by fitting the damping ratio for the notional dielectric function scaling to the appropriate peaks. The absorption and the conductivity of NaRaF3 compound is better than the RbRaF3 compound which make it suitable for the solar cell applications increasing the efficiency and work function. We observed that both compounds are mechanically stable with cubic structure. The criteria for the mechanical stability of compounds are also met by the estimated elastic results. These compounds have potential application in field of solar cell and medical.

    OBJECTIVES: The band gap, absorption and the conductivity are necessary conditions for potential applications. Here, literature was reviewed to check computational translational insight into the relationships between absorption and conductivity for solar cell and medical applications of novel RbRaF3 and NaRaF3 compounds.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links