Displaying all 3 publications

Abstract:
Sort:
  1. Sekizuka T, Kai M, Nakanaga K, Nakata N, Kazumi Y, Maeda S, et al.
    PLoS One, 2014;9(12):e114848.
    PMID: 25503461 DOI: 10.1371/journal.pone.0114848
    Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898). Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional ß-oxidation-related genes and, notably, the mammalian cell entry (mce) operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1), in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32%) and three unique conserved regions (26/44; approximately 60%, 34/44; approximately 77% and 40/44; approximately 91%), as well as isolates of other countries (Malaysia, France, United Kingdom and United States). The well-conserved genomic island MmGI-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGI-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC), suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC.
  2. Nakayama E, Tajima S, Kotaki A, Shibasaki KI, Itokawa K, Kato K, et al.
    J Travel Med, 2018 01 01;25(1).
    PMID: 29394382 DOI: 10.1093/jtm/tax072
    Background: Due to the huge 2-way human traffic between Japan and Chikungunya (CHIK) fever-endemic regions, 89 imported cases of CHIK fever were confirmed in Japan from January 2006 to June 2016. Fifty-four of 89 cases were confirmed virologically and serologically at the National Institute of Infectious Diseases, Japan and we present the demographic profiles of the patients and the phylogenetic features of 14 CHIK virus (CHIKV) isolates.

    Methods: Patients were diagnosed with CHIK fever by a combination of virus isolation, viral RNA amplification, IgM antibody-, IgG antibody-, and/or neutralizing antibody detection. The whole-genome sequences of the CHIKV isolates were determined by next-generation sequencing.

    Results: Prior to 2014, the source countries of the imported CHIK fever cases were limited to South and Southeast Asian countries. After 2014, when outbreaks occurred in the Pacific and Caribbean Islands and Latin American countries, there was an increase in the number of imported cases from these regions. A phylogenetic analysis of 14 isolates revealed that four isolates recovered from three patients who returned from Sri Lanka, Malaysia and Angola, belonged to the East/Central/South African genotype, while 10 isolates from 10 patients who returned from Indonesia, the Philippines, Tonga, the Commonwealth of Dominica, Colombia and Cuba, belonged to the Asian genotype.

    Conclusion: Through the phylogenetic analysis of the isolates, we could predict the situations of the CHIK fever epidemics in Indonesia, Angola and Cuba. Although Japan has not yet experienced an autochthonous outbreak of CHIK fever, the possibility of the future introduction of CHIKV through an imported case and subsequent local transmission should be considered, especially during the mosquito-active season. The monitoring and reporting of imported cases will be useful to understand the situation of the global epidemic, to increase awareness of and facilitate the diagnosis of CHIK fever, and to identify a future CHIK fever outbreak in Japan.

  3. Lotfy M, Badra G, Burham W, Alenzi FQ, Bermejo-Martin JF, Bernardo D, et al.
    Br J Biomed Sci, 2006 Jan;63(4):171-184.
    PMID: 28700882 DOI: 10.1080/09674845.2006.11732742
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links