METHODS: The modified SPEED or M-SPEED is a sequence prediction algorithm, which modified the previous SPEED algorithm by using time duration of appliance's ON-OFF states to decide the next state. M-SPEED discovered periodic episodes of inhabitant behavior, trained it with learned episodes, and made decisions based on the obtained knowledge.
RESULTS: The results showed that M-SPEED achieves 96.8% prediction accuracy, which is better than other time prediction algorithms like PUBS, ALZ with temporal rules and the previous SPEED.
CONCLUSIONS: Since human behavior shows natural temporal patterns, duration times can be used to predict future events more accurately. This inhabitant activity prediction system will certainly improve the smart homes by ensuring safety and better care for elderly and handicapped people.
METHOD: For designing and modeling the DSPN severity grading systems for MNSI, 19 years of data from Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials were used. Different Machine learning-based feature ranking techniques were investigated to identify the important MNSI features associated with DSPN diagnosis. A multivariable logistic regression-based nomogram was generated and validated for DSPN severity grading using the best performing top-ranked MNSI features.
RESULTS: Top-10 ranked features from MNSI features: Appearance of Feet (R), Ankle Reflexes (R), Vibration perception (L), Vibration perception (R), Appearance of Feet (L), 10-gm filament (L), Ankle Reflexes (L), 10-gm filament (R), Bed Cover Touch, and Ulceration (R) were identified as important features for identifying DSPN by Multi-Tree Extreme Gradient Boost model. The nomogram-based prediction model exhibited an accuracy of 97.95% and 98.84% for the EDIC test set and an independent test set, respectively. A DSPN severity score technique was generated for MNSI from the DSPN severity prediction model. DSPN patients were stratified into four severity levels: absent, mild, moderate, and severe using the cut-off values of 17.6, 19.1, 20.5 for the DSPN probability less than 50%, 75%-90%, and above 90%, respectively.
CONCLUSIONS: The findings of this work provide a machine learning-based MNSI severity grading system which has the potential to be used as a secondary decision support system by health professionals in clinical applications and large clinical trials to identify high-risk DSPN patients.