Displaying all 2 publications

Abstract:
Sort:
  1. Cui YC, Wu Q, Teh SW, Peli A, Bu G, Qiu YS, et al.
    Microb Pathog, 2018 Sep;122:130-136.
    PMID: 29909241 DOI: 10.1016/j.micpath.2018.06.021
    The recent global resurgence of arthritogenic alphaviruses, including Ross River, chikungunya, and dengue, highlights an urgency for the development of therapeutic strategies. Currently, dengue represents the most rapidly transmitting mosquito-borne viral disease worldwide. By contracting bone breaking diseases, patients experience devastating clinical manifestations involving muscle pain and bone loss. The bone self-repair and regeneration mechanisms can be damaged by the presence of viruses and bacteria. The rapid establishment of dengue epidemic and the severity of bacterial and viral infections affecting the bone stress the urgent need of developing effective interventions. Herein, we review current knowledge on bone breaking infections, covering both bacterial and mosquito-borne viral ones. The mechanisms exploited by these diseases to significantly affect the bone, including interferences with self-repair and regeneration routes, were discussed. In the final section, challenges for future research aimed to treat and prevent bacterial and mosquito-borne bone-breaking infections have been outlined.
  2. Cui YC, Qiu YS, Wu Q, Bu G, Peli A, Teh SW, et al.
    Exp Biol Med (Maywood), 2021 May;246(10):1177-1183.
    PMID: 33535809 DOI: 10.1177/1535370220985468
    Osteoblasts play an important role in bone regeneration and repair. The hypoxia condition in bone occurs when bone undergoes fracture, and this will trigger a series of biochemical and mechanical changes to enable bone repair. Hence, it is interesting to observe the metabolites and metabolism changes when osteoblasts are exposed to hypoxic condition. This study has looked into the response of human osteoblast hFOB 1.19 under normoxic and hypoxic conditions by observing the cell growth and utilization of metabolites via Phenotype MicroArrays™ under these two different oxygen concentrations. The cell growth of hFOB 1.19 under hypoxic condition showed better growth compared to hFOB 1.19 under normal condition. In this study, osteoblast used glycolysis as the main pathway to produce energy as hFOB 1.19 in both hypoxic and normoxic conditions showed cell growth in well containing dextrin, glycogen, maltotriose, D-maltose, D-glucose-6-phospate, D-glucose, D-mannose, D-Turanose, D-fructose-6-phosphate, D-galactose, uridine, adenosine, inosine and α-keto-glutaric acid. In hypoxia, the cells have utilized additional metabolites such as α-D-glucose-1-phosphate and D-fructose, indicating possible activation of glycogen synthesis and glycogenolysis to metabolize α-D-glucose-1-phosphate. Meanwhile, during normoxia, D-L-α-glycerol phosphate was used, and this implies that the osteoblast may use glycerol-3-phosphate shuttle and oxidative phosphorylation to metabolize glycerol-3-phosphate.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links