Displaying all 7 publications

Abstract:
Sort:
  1. Puteh AB, Mondal MM, Ismail MR, Latif MA
    Biomed Res Int, 2014;2014:302179.
    PMID: 24895563 DOI: 10.1155/2014/302179
    The experiment was conducted to investigate potential causes of grain sterility in widely cultivated rice variety in Malaysia, MR219 and its two mutant lines (RM311 and RM109) by examining the source-sink relations. RM311 produced increased dry matter yield both at heading and maturity and also showed higher grain yield with greater proportion of grain sterility than the other two genotypes (RM109 and MR219) resulting in the lowest harvest index (49.68%). In contrast, harvest index was greater in RM109 (53.34%) and MR219 (52.76%) with less grain sterility percentage than MR311 indicating that dry matter partitioning to economic yield was better in RM109 and MR219 than in MR311. Results indicated that dry matter allocation per spikelet from heading to maturity was important for reducing grain sterility in rice. The greater above-ground crop dry matter per spikelet was observed in RM109 and MR219 as compared to high dry matter producing genotype; RM311 implies that poor grain filling may not have resulted from dry matter production or source limitation. These findings suggest that grain sterility or poor grain filling in rice is the result of poor translocation and partitioning of assimilates into grains (sink) rather than of limited biomass production or source limitation.
  2. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    C. R. Biol., 2015 Feb;338(2):83-94.
    PMID: 25553855 DOI: 10.1016/j.crvi.2014.11.003
    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast.
  3. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KhN, et al.
    Int J Mol Sci, 2013;14(11):22499-528.
    PMID: 24240810 DOI: 10.3390/ijms141122499
    Over the last few decades, the use of molecular markers has played an increasing role in rice breeding and genetics. Of the different types of molecular markers, microsatellites have been utilized most extensively, because they can be readily amplified by PCR and the large amount of allelic variation at each locus. Microsatellites are also known as simple sequence repeats (SSR), and they are typically composed of 1-6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs. The evolution of new biotypes of pests and diseases as well as the pressures of climate change pose serious challenges to rice breeders, who would like to increase rice production by introducing resistance to multiple biotic and abiotic stresses. Recent advances in rice genomics have now made it possible to identify and map a number of genes through linkage to existing DNA markers. Among the more noteworthy examples of genes that have been tightly linked to molecular markers in rice are those that confer resistance or tolerance to blast. Therefore, in combination with conventional breeding approaches, marker-assisted selection (MAS) can be used to monitor the presence or lack of these genes in breeding populations. For example, marker-assisted backcross breeding has been used to integrate important genes with significant biological effects into a number of commonly grown rice varieties. The use of cost-effective, finely mapped microsatellite markers and MAS strategies should provide opportunities for breeders to develop high-yield, blast resistance rice cultivars. The aim of this review is to summarize the current knowledge concerning the linkage of microsatellite markers to rice blast resistance genes, as well as to explore the use of MAS in rice breeding programs aimed at improving blast resistance in this species. We also discuss the various advantages, disadvantages and uses of microsatellite markers relative to other molecular marker types.
  4. Mondal MM, Puteh AB, Malek MA, Ismail MR, Rafii MY, Latif MA
    ScientificWorldJournal, 2012;2012:425168.
    PMID: 22919319 DOI: 10.1100/2012/425168
    Growth parameters such as leaf area (LA), total dry mass (TDM) production, crop growth rate (CGR), relative growth rate (RGR), and net assimilation rate (NAR) were compared in six varieties of mungbean under subtropical condition (24°8' N 90°0' E) to identify limiting growth characters for the efficient application of physiology breeding for higher yields. Results revealed that a relatively smaller portion of TDM was produced before flower initiation and the bulk of it after anthesis. The maximum CGR was observed during pod filling stage in all the varieties due to maximum leaf area (LA) development at this stage. Two plant characters such as LA and CGR contributed to the higher TDM production. Results indicated that high yielding mungbean varieties should possess larger LA, higher TDM production ability, superior CGR at all growth stages, and high relative growth rate and net assimilation rate at vegetative stage which would result in superior yield components.
  5. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, et al.
    Mol Biol Rep, 2013 Mar;40(3):2369-88.
    PMID: 23184051 DOI: 10.1007/s11033-012-2318-0
    Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.
  6. Ramli AB, Rafii MY, Latif MA, Saleh GB, Omar OB, Puteh AB
    J Sci Food Agric, 2016 Mar;96(5):1593-600.
    PMID: 25982124 DOI: 10.1002/jsfa.7260
    Genetic analysis using generation mean analysis is a tool for designing the most appropriate breeding approaches to developing varieties of rice. It estimates the gene actions that control quantitative traits, as well as the additive, dominance and epistatic effects. This study was conducted using three rice populations that were derived from parental lines with different amylose content. The aim was to partition the gene actions using generation mean analysis for the selected populations.
  7. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    J Sci Food Agric, 2017 Jul;97(9):2810-2818.
    PMID: 27778337 DOI: 10.1002/jsfa.8109
    BACKGROUND: The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor.

    RESULTS: Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219.

    CONCLUSION: The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links