Displaying all 5 publications

Abstract:
Sort:
  1. Shmukler BE, Kedar PS, Warang P, Desai M, Madkaikar M, Ghosh K, et al.
    Am J Hematol, 2010 Oct;85(10):824-8.
    PMID: 20799361 DOI: 10.1002/ajh.21836
    Familial distal renal tubular acidosis (dRTA) can be caused by mutations in the Cl2/HCO32 exchanger of the renal Type A intercalated cell, kidney AE1/SLC4A1. dRTA-associated AE1 mutations have been reported in families from North America, Europe, Thailand, Malaysia, Papua-New Guinea, Taiwan, and the Philippines, but not India. The dRTA mutation AE1 A858D has been detected only in the context of compound heterozygosity. We report here two unrelated Indian patients with combined hemolytic anemia and dRTA who share homozygous A858D mutations of the AE1/SLC4A1 gene. The mutation creates a novel restriction site that is validated for diagnostic screening.
  2. Prabhakar S, Lule S, da Hora CC, Breakefield XO, Cheah PS
    Exp Anim, 2021 Nov 10;70(4):450-458.
    PMID: 34039790 DOI: 10.1538/expanim.20-0186
    Adeno-associated virus (AAV)-based gene therapy is gaining popularity owing to its excellent safety profile and effective therapeutic outcomes in a number of diseases. Intravenous (IV) injection of AAV into the tail vein, facial vein and retro-orbital (RO) venous sinus have all been useful strategies to infuse the viral vector systemically. However, tail vein injection is technically challenging in juvenile mice, and injection at young ages (≤ postnatal day-(P)21) is essentially impossible. The temporal or facial vein is localized anterior to the ear bud and is markedly visible in the first couple of days postnatally. However, this method is age-dependent and requires a dissecting microscope. Retro-orbital injection (ROI), on the other hand, is suitable for all murine ages, including newborn and older mice, and is relatively less stressful to animals compared to tail vein injection. Although many reports have shown ROI as an effective route of AAV delivery, herein we aim to highlight and summarize the methods and benefits of ROI. To capture the full spectrum of transduction efficiency mediated by ROI, we transduced the editing-dependent reporter mice (Ai9 Cre reporter mice) with the AAV9 vector, which targets a wide range of peripheral tissues with exceptional brain tropism. We also provide a comprehensive description of the ROI technique to facilitate viral vector administration without complications.
  3. Prabhakar S, Cheah PS, Zhang X, Zinter M, Gianatasio M, Hudry E, et al.
    Mol Ther Methods Clin Dev, 2019 Dec 13;15:18-26.
    PMID: 31534984 DOI: 10.1016/j.omtm.2019.08.003
    Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome caused by mutations in TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins act as a complex that inhibits mammalian target of rapamycin (mTOR)-mediated cell growth and proliferation. Loss of either protein leads to overgrowth in many organs, including subependymal nodules, subependymal giant cell astrocytomas, and cortical tubers in the human brain. Neurological manifestations in TSC include intellectual disability, autism, hydrocephalus, and epilepsy. In a stochastic mouse model of TSC1 brain lesions, complete loss of Tsc1 is achieved in homozygous Tsc1-floxed mice in a subpopulation of neural cells in the brain by intracerebroventricular (i.c.v.) injection at birth of an adeno-associated virus (AAV) vector encoding Cre recombinase. This results in median survival of 38 days and brain pathology, including subependymal lesions and enlargement of neuronal cells. Remarkably, when these mice were injected intravenously on day 21 with an AAV9 vector encoding hamartin, most survived at least up to 429 days in apparently healthy condition with marked reduction in brain pathology. Thus, a single intravenous administration of an AAV vector encoding hamartin restored protein function in enough cells in the brain to extend lifespan in this TSC1 mouse model.
  4. Prabhakar S, Beauchamp RL, Cheah PS, Yoshinaga A, Haidar EA, Lule S, et al.
    Mol Ther Methods Clin Dev, 2022 Sep 08;26:169-180.
    PMID: 35846573 DOI: 10.1016/j.omtm.2022.06.012
    Loss of function of the neurofibromatosis type 2 (NF2) tumor suppressor gene leads to the formation of schwannomas, meningiomas, and ependymomas, comprising ∼50% of all sporadic cases of primary nervous system tumors. NF2 syndrome is an autosomal dominant condition, with bi-allelic inactivation of germline and somatic alleles resulting in loss of function of the encoded protein merlin and activation of mammalian target of rapamycin (mTOR) pathway signaling in NF2-deficient cells. Here we describe a gene replacement approach through direct intratumoral injection of an adeno-associated virus vector expressing merlin in a novel human schwannoma model in nude mice. In culture, the introduction of an AAV1 vector encoding merlin into CRISPR-modified human NF2-null arachnoidal cells (ACs) or Schwann cells (SCs) was associated with decreased size and mTORC1 pathway activation consistent with restored merlin activity. In vivo, a single injection of AAV1-merlin directly into human NF2-null SC-derived tumors growing in the sciatic nerve of nude mice led to regression of tumors over a 10-week period, associated with a decrease in dividing cells and an increase in apoptosis, in comparison with vehicle. These studies establish that merlin re-expression via gene replacement in NF2-null schwannomas is sufficient to cause tumor regression, thereby potentially providing an effective treatment for NF2.
  5. Cheah PS, Prabhakar S, Yellen D, Beauchamp RL, Zhang X, Kasamatsu S, et al.
    Sci Adv, 2021 Jan;7(2).
    PMID: 33523984 DOI: 10.1126/sciadv.abb1703
    Tuberous sclerosis complex (TSC) results from loss of a tumor suppressor gene - TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins formed a complex to inhibit mTORC1-mediated cell growth and proliferation. Loss of either protein leads to overgrowth lesions in many vital organs. Gene therapy was evaluated in a mouse model of TSC2 using an adeno-associated virus (AAV) vector carrying the complementary for a "condensed" form of human tuberin (cTuberin). Functionality of cTuberin was verified in culture. A mouse model of TSC2 was generated by AAV-Cre recombinase disruption of Tsc2-floxed alleles at birth, leading to a shortened lifespan (mean 58 days) and brain pathology consistent with TSC. When these mice were injected intravenously on day 21 with AAV9-cTuberin, the mean survival was extended to 462 days with reduction in brain pathology. This demonstrates the potential of treating life-threatening TSC2 lesions with a single intravenous injection of AAV9-cTuberin.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links