Displaying all 3 publications

Abstract:
Sort:
  1. Ab Wahab MK, Mohamad HS, Jayamani E, Ismail H, Wnuk I, Przybył A, et al.
    Materials (Basel), 2021 May 27;14(11).
    PMID: 34071851 DOI: 10.3390/ma14112867
    The preparation of polystyrene/thermoplastic starch (PS/TPS) blends was divided into three stages. The first stage involved the preparation of TPS from sago starch. Then, for the second stage, PS was blended with TPS to produce a TPS/PS blend. The ratios of the TPS/PS blend were 20:80, 40:60, 60:40, and 80:20. The final stage was a modification of the composition of TPS/PS blends with succinic anhydride and ascorbic acid treatment. Both untreated and treated blends were characterized by their physical, thermal, and surface morphology properties. The obtained results indicate that modified blends have better tensile strength as the adhesion between TPS and PS was improved. This can be observed from SEM micrographs, as modified blends with succinic anhydride and ascorbic acid had smaller TPS dispersion in PS/TPS blends. The micrograph showed that there was no agglomeration and void formation in the TPS/PS blending process. Furthermore, modified blends show better thermal stability, as proved by thermogravimetric analysis. Water uptake into the TPS/PS blends also decreased after the modifications, and the structural analysis showed the formation of a new peak after the modification process.
  2. Chong BW, Othman R, Putra Jaya R, Mohd Hasan MR, Sandu AV, Nabiałek M, et al.
    Materials (Basel), 2021 Apr 09;14(8).
    PMID: 33918757 DOI: 10.3390/ma14081866
    Concrete mix design and the determination of concrete performance are not merely engineering studies, but also mathematical and statistical endeavors. The study of concrete mechanical properties involves a myriad of factors, including, but not limited to, the amount of each constituent material and its proportion, the type and dosage of chemical additives, and the inclusion of different waste materials. The number of factors and combinations make it difficult, or outright impossible, to formulate an expression of concrete performance through sheer experimentation. Hence, design of experiment has become a part of studies, involving concrete with material addition or replacement. This paper reviewed common design of experimental methods, implemented by past studies, which looked into the analysis of concrete performance. Several analysis methods were employed to optimize data collection and data analysis, such as analysis of variance (ANOVA), regression, Taguchi method, Response Surface Methodology, and Artificial Neural Network. It can be concluded that the use of statistical analysis is helpful for concrete material research, and all the reviewed designs of experimental methods are helpful in simplifying the work and saving time, while providing accurate prediction of concrete mechanical performance.
  3. Ariffin N, Abdullah MMAB, Postawa P, Zamree AbdRahim S, Mohd Arif Zainol MRR, Jaya RP, et al.
    Materials (Basel), 2021 Feb 08;14(4).
    PMID: 33567736 DOI: 10.3390/ma14040814
    This current work focuses on the synthesis of geopolymer-based adsorbent which uses kaolin as a source material, mixed with alkali solution consisting of 10M NaOH and Na2SiO3 as well as aluminium powder as a foaming agent. The experimental range for the aluminium powder was between 0.6, 0.8, 1.0 and 1.2wt%. The structure, properties and characterization of the geopolymer were examined using X-Ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adsorption capacity and porosity were analysed based on various percentages of aluminium powder added. The results indicate that the use of aluminium powder exhibited a better pore size distribution and higher porosity, suggesting a better heavy metal removal. The maximum adsorption capacity of Cu2+ approached approximately 98%. The findings indicate that 0.8% aluminium powder was the optimal aluminium powder content for geopolymer adsorbent. The removal efficiency was affected by pH, adsorbent dosage and contact time. The optimum removal capacity of Cu2+ was obtained at pH 6 with 1.5 g geopolymer adsorbent and 4 h contact time. Therefore, it can be concluded that the increase in porosity increases the adsorption of Cu2+.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links