Displaying all 2 publications

Abstract:
Sort:
  1. Patro CP, Khan AM, Tan TW, Fu XY
    PLoS One, 2014;9(8):e104597.
    PMID: 25157689 DOI: 10.1371/journal.pone.0104597
    Signal transducers and activators of transcription (STAT) proteins are key signalling molecules in metazoans, implicated in various cellular processes. Increased research in the field has resulted in the accumulation of STAT sequence and structure data, which are scattered across various public databases, missing extensive functional annotations, and prone to effort redundancy because of the dearth of community sharing. Therefore, there is a need to integrate the existing sequence, structure and functional data into a central repository, one that is enriched with annotations and provides a platform for community contributions. Herein, we present STATdb (publicly available at http://statdb.bic.nus.edu.sg/), the first integrated resource for STAT sequences comprising 1540 records representing the known STATome, enriched with existing structural and functional information from various databases and literature and including manual annotations. STATdb provides advanced features for data visualization, analysis and prediction, and community contributions. A key feature is a meta-predictor to characterise STAT sequences based on a novel classification that integrates STAT domain architecture, lineage and function. A curation policy workflow has been devised for regulated and structured community contributions, with an update policy for the seamless integration of new data and annotations.
  2. Costa H, Xu X, Overbeek G, Vasaikar S, Patro CP, Kostopoulou ON, et al.
    Oncotarget, 2016 Jul 26;7(30):47221-47231.
    PMID: 27363017 DOI: 10.18632/oncotarget.9722
    BACKGROUND: Both arginase (ARG2) and human cytomegalovirus (HCMV) have been implicated in tumorigenesis. However, the role of ARG2 in the pathogenesis of glioblastoma (GBM) and the HCMV effects on ARG2 are unknown. We hypothesize that HCMV may contribute to tumorigenesis by increasing ARG2 expression.

    RESULTS: ARG2 promotes tumorigenesis by increasing cellular proliferation, migration, invasion and vasculogenic mimicry in GBM cells, at least in part due to overexpression of MMP2/9. The nor-NOHA significantly reduced migration and tube formation of ARG2-overexpressing cells. HCMV immediate-early proteins (IE1/2) or its downstream pathways upregulated the expression of ARG2 in U-251 MG cells. Immunostaining of GBM tissue sections confirmed the overexpression of ARG2, consistent with data from subsets of Gene Expression Omnibus. Moreover, higher levels of ARG2 expression tended to be associated with poorer survival in GBM patient by analyzing data from TCGA.

    METHODS: The role of ARG2 in tumorigenesis was examined by proliferation-, migration-, invasion-, wound healing- and tube formation assays using an ARG2-overexpressing cell line and ARG inhibitor, N (omega)-hydroxy-nor-L-arginine (nor-NOHA) and siRNA against ARG2 coupled with functional assays measuring MMP2/9 activity, VEGF levels and nitric oxide synthase activity. Association between HCMV and ARG2 were examined in vitro with 3 different GBM cell lines, and ex vivo with immunostaining on GBM tissue sections. The viral mechanism mediating ARG2 induction was examined by siRNA approach. Correlation between ARG2 expression and patient survival was extrapolated from bioinformatics analysis on data from The Cancer Genome Atlas (TCGA).

    CONCLUSIONS: ARG2 promotes tumorigenesis, and HCMV may contribute to GBM pathogenesis by upregulating ARG2.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links