Displaying all 6 publications

Abstract:
Sort:
  1. Cheong SL, Federico S, Spalluto G, Klotz KN, Pastorin G
    Drug Discov Today, 2019 09;24(9):1769-1783.
    PMID: 31102728 DOI: 10.1016/j.drudis.2019.05.003
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons. Motor features such as tremor, rigidity, bradykinesia and postural instability are common traits of PD. Current treatment options provide symptomatic relief to the condition but are unable to reverse disease progression. The conventional single-target therapeutic approach might not always induce the desired effect owing to the multifactorial nature of PD. Hence, multitarget strategies have been proposed to simultaneously target multiple proteins involved in the development of PD. Herein, we provide an overview of the pathogenesis of PD and the current pharmacotherapies. Furthermore, rationales and examples of multitarget approaches that have been tested in preclinical trials for the treatment of PD are also discussed.
  2. Ebadi M, Bullo S, Buskaran K, Hussein MZ, Fakurazi S, Pastorin G
    Polymers (Basel), 2021 Mar 10;13(6).
    PMID: 33802205 DOI: 10.3390/polym13060855
    Iron oxide nanoparticles are suitable for biomedical applications owing to their ability to anchor to various active agents and drugs, unique magnetic properties, nontoxicity, and biocompatibility. In this work, the physico-chemical and magnetic properties, as well as the cytotoxicity, of Fe3O4 nanoparticles coated with a polymeric carrier and loaded with a 5-fluorouracil (5-FU) anti-cancer drug are discussed. The synthesized Fe3O4 nanoparticles were coated with polyvinyl alcohol and Zn/Al-layered double hydroxide as the drug host. The XRD, DTA/TG, and FTIR analyzes confirmed the presence of the coating layer on the surface of nanoparticles. The results showed a decrease in saturation magnetization of bare Fe3O4 nanoparticles after coating with the PVA/5FU/Zn/Al-LDH layer. In addition, the presence of the coating prevented the agglomeration of nanoparticles. Furthermore, the pseudo-second-order equation governed the kinetics of drug release. Finally, the coated nanoparticles showed stronger activity against liver cancer cells (HepG2) compared to that of the naked 5-FU drug, and displayed no cytotoxicity towards 3T3 fibroblast cell lines. The results of the present study demonstrate the potential of a nano delivery system for cancer treatment.
  3. Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S, Pastorin G
    Sci Rep, 2020 Dec 09;10(1):21521.
    PMID: 33298980 DOI: 10.1038/s41598-020-76504-5
    The use of nanocarriers composed of polyethylene glycol- and polyvinyl alcohol-coated vesicles encapsulating active molecules in place of conventional chemotherapy drugs can reduce many of the chemotherapy-associated challenges because of the increased drug concentration at the diseased area in the body. The present study investigated the structure and magnetic properties of iron oxide nanoparticles in the presence of polyvinyl alcohol and polyethylene glycol as the basic surface coating agents. We used superparamagnetic iron oxide nanoparticles (FNPs) as the core and studied their effectiveness when two polymers, namely polyvinyl alcohol (PVA) and polyethylene glycol (PEG), were used as the coating agents together with magnesium-aluminum-layered double hydroxide (MLDH) as the nanocarrier. In addition, the anticancer drug sorafenib (SO), was loaded on MLDH and coated onto the surface of the nanoparticles, to best exploit this nano-drug delivery system for biomedical applications. Samples were prepared by the co-precipitation method, and the resulting formation of the nanoparticles was confirmed by X-ray, FTIR, TEM, SEM, DLS, HPLC, UV-Vis, TGA and VSM. The X-ray diffraction results indicated that all the as-synthesized samples contained highly crystalline and pure Fe3O4. Transmission electron microscopy analysis showed that the shape of FPEGSO-MLDH nanoparticles was generally spherical, with a mean diameter of 17 nm, compared to 19 nm for FPVASO-MLDH. Fourier transform infrared spectroscopy confirmed the presence of nanocarriers with polymer-coating on the surface of iron oxide nanoparticles and the existence of loaded active drug consisting of sorafenib. Thermogravimetric analyses demonstrated the thermal stability of the nanoparticles, which displayed enhanced anticancer effect after coating. Vibrating sample magnetometer (VSM) curves of both produced samples showed superparamagnetic behavior with the high saturation magnetization of 57 emu/g for FPEGSO-MLDH and 49 emu/g for FPVASO-MLDH. The scanning electron microscopy (SEM) images showed a narrow size distribution of both final samples. The SO drug loading and the release behavior from FPEGSO-MLDH and FPVASO-MLDH were assessed by ultraviolet-visible spectroscopy. This evaluation showed around 85% drug release within 72 h, while 74% of sorafenib was released in phosphate buffer solution at pH 4.8. The release profiles of sorafenib from the two designed samples were found to be sustained according to pseudo-second-order kinetics. The cytotoxicity studies confirmed the anti-cancer activity of the coated nanoparticles loaded with SO against liver cancer cells, HepG2. Conversely, the drug delivery system was less toxic than the pure drug towards fibroblast-type 3T3 cells.
  4. Ebadi M, Buskaran K, Bullo S, Hussein MZ, Fakurazi S, Pastorin G
    Polymers (Basel), 2020 Nov 17;12(11).
    PMID: 33212875 DOI: 10.3390/polym12112716
    In the last two decades, the development of novel approaches for cancer treatment has attracted intense attention due to the growing number of patients and the inefficiency of the available current conventional treatments. In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the co-precipitation method in an alkaline medium. Then the nanoparticles were chemically modified by coating them with polyethylene glycol (PEG) and sorafenib (SO)-zinc/aluminum layered double hydroxide (ZLDH) to improve their biocompatibility. The SPIONs and their coated and drug-loaded nanoparticles, M-PEG-SO-ZLDH are of the crystalline phase with the presence of C, O, Al, Fe, Cl, Zn in the latter, indicating the presence of the coating layers on the surface of the SPIONs. The superparamagnetic properties of the bare SPIONs were found to be reduced but retained in its coated drug delivery nanoparticles, M-PEG-SO-ZLDH. The latter has an average particle size of 16 nm and the release of the drug from it was found to be governed by the pseudo-second-order kinetic. The cytotoxicity and biocompatibility evaluation of the drug-loaded magnetic nanoparticles using 3T3 and HepG2 cells using the diphenyltetrazolium bromide (MTT) assays shows that the synthesized nanoparticles were less toxic than the pure drug. This preliminary study indicates that the prepared nanoparticles are suitable to be used for the drug delivery system.
  5. Shao YM, Ma X, Paira P, Tan A, Herr DR, Lim KL, et al.
    PLoS One, 2018;13(1):e0188212.
    PMID: 29304113 DOI: 10.1371/journal.pone.0188212
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM).
  6. Tan A, Babak MV, Venkatesan G, Lim C, Klotz KN, Herr DR, et al.
    Molecules, 2019 Oct 11;24(20).
    PMID: 31614517 DOI: 10.3390/molecules24203661
    Human A3 adenosine receptor hA3AR has been implicated in gastrointestinal cancer, where its cellular expression has been found increased, thus suggesting its potential as a molecular target for novel anticancer compounds. Observation made in our previous work indicated the importance of the carbonyl group of amide in the indolylpyrimidylpiperazine (IPP) for its human A2A adenosine receptor (hA2AAR) subtype binding selectivity over the other AR subtypes. Taking this observation into account, we structurally modified an indolylpyrimidylpiperazine (IPP) scaffold, 1 (a non-selective adenosine receptors' ligand) into a modified IPP (mIPP) scaffold by switching the position of the carbonyl group, resulting in the formation of both ketone and tertiary amine groups in the new scaffold. Results showed that such modification diminished the A2A activity and instead conferred hA3AR agonistic activity. Among the new mIPP derivatives (3-6), compound 4 showed potential as a hA3AR partial agonist, with an Emax of 30% and EC50 of 2.89 ± 0.55 μM. In the cytotoxicity assays, compound 4 also exhibited higher cytotoxicity against both colorectal and liver cancer cells as compared to normal cells. Overall, this new series of compounds provide a promising starting point for further development of potent and selective hA3AR partial agonists for the treatment of gastrointestinal cancers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links