Displaying all 15 publications

Abstract:
Sort:
  1. Ullah A, Nawi NM, Ouhame S
    Artif Intell Rev, 2022;55(3):2529-2573.
    PMID: 34580553 DOI: 10.1007/s10462-021-10071-7
    Cloud computing is new technology that has considerably changed human life at different aspect over the last decade. Especially after the COVID-19 pandemic, almost all life activity shifted into cloud base. Cloud computing is a utility where different hardware and software resources are accessed on pay per user ground base. Most of these resources are available in virtualized form and virtual machine (VM) is one of the main elements of visualization.VM used in data center for distribution of resource and application according to benefactor demand. Cloud data center faces different issue in respect of performance and efficiency for improvement of these issues different approaches are used. Virtual machine play important role for improvement of data center performance therefore different approach are used for improvement of virtual machine efficiency (i-e) load balancing of resource and task. For the improvement of this section different parameter of VM improve like makespan, quality of service, energy, data accuracy and network utilization. Improvement of different parameter in VM directly improve the performance of cloud computing. Therefore, we conducting this review paper that we can discuss about various improvements that took place in VM from 2015 to 20,201. This review paper also contain information about various parameter of cloud computing and final section of paper present the role of machine learning algorithm in VM as well load balancing approach along with the future direction of VM in cloud data center.
  2. Nawi NM, Yahya A, Chen G, Bockari-Gevao SM, Maraseni TN
    J Agric Saf Health, 2012 Jan;18(1):45-56.
    PMID: 22458015
    A study was undertaken to evaluate the human energy consumption of various field operations involved in lowland rice cultivation in Malaysia. Based on recorded average heart rates, fertilizing was found to be the most strenuous operation, with an average heart rate of 138 beats min(-1). There were no significant differences in the average heart rates of the subjects among the individual tasks within the first plowing, second plowing, and harvesting operations, with the average heart rates for these three tasks being 116, 106, and 106 beats min(-1), respectively. The corresponding energy expenditures were 3.90, 3.43, and 3.35 kcal min(-1). Loading the seed into the blower tank and broadcasting the seed were the most critical tasks for the seed broadcasting operation, with average heart rates of 124 and 136 beats min(-1), respectively. The highest energy expenditure of 418.38 kcal ha(-1) was observed for seed broadcasting, and the lowest energy expenditure of 127.96 kcal ha(-1) was for second plowing. The total seasonal human energy expenditure for rice cultivation was estimated to be 5810.71 kcal ha(-1), 55.7% of which was spent on pesticide spraying. Although the sample size in this study was relatively small, the results indicated that human energy expenditure per unit area (kcal ha(-1)) was positively linked to the average heart rate of the subjects and negatively linked to the field capacity. Thus, mechanization of certain tasks could decrease worker physical effort and fatigue and increase production.
  3. Elsoragaby S, Yahya A, Mahadi MR, Nawi NM, Mairghany M
    Heliyon, 2019 Apr;5(4):e01427.
    PMID: 30984885 DOI: 10.1016/j.heliyon.2019.e01427
    In paddy cultivation, harvesting is the most important operation, which needs suitable machinery. Thus, this study was carried out to compare field performances and energy and environmental effect between the conventional 5 m cutting width NEW HOLLAND CLAYSON 8080, 82 kW@2500 rpm combine harvester running on a total net area of 42.78 ha of plots for two rice (Oryza sativa L.) cultivation seasons and the new mid-size 2.7 m cutting width WORLD STAR WS7.0, 76 kW@2600 rpm combine harvester running on a total net area of 16.95 ha of plots for two rice cultivation seasons. The conventional combine as compared to mid-size combine showed 14.4% greater mean fuel consumptions (21.13 versus 18.46 l/ha), 31.1% greater mean effective field capacity (0.69 versus 0.53 ha/h), 5.23% greater cornering time (turning time) percentage of total time (8.28% versus 3.05%) and 1.41% greater reversing time percentage of total time (7.2% versus 5.79%) but 20.90% lesser mean operational speed (3.24 versus 4.10 km/h), 11.69% lesser effective time percentage of total time (60.0%versus 71.69%h/ha), 10.8% lesser mean field efficiency (64.3% versus 72.1%). In terms of total energy use the conventional combine showed 24.64% greater mean total energy use in the harvesting operation (1445.81 versus 1160.00 MJ/ha), 14.46% greater mean fuel energy (1010.014 versus 882.39 MJ/ha), 56.47% greater mean machinery energy (431.32 versus 275.65 MJ/ha) and 59.25% greater mean human energy (3.48 and 2.18 MJ/ha), this cause 26.12% greater mean total Green House Gas emission (GHG) than the mid-size combine. The results revealed that the mid-size combine is more suitable in conducting the harvest operation in rice field in Malaysia than the conventional combine.
  4. Rehman MZ, Khan A, Ghazali R, Aamir M, Nawi NM
    PLoS One, 2021;16(8):e0255269.
    PMID: 34358237 DOI: 10.1371/journal.pone.0255269
    The Sine-Cosine algorithm (SCA) is a population-based metaheuristic algorithm utilizing sine and cosine functions to perform search. To enable the search process, SCA incorporates several search parameters. But sometimes, these parameters make the search in SCA vulnerable to local minima/maxima. To overcome this problem, a new Multi Sine-Cosine algorithm (MSCA) is proposed in this paper. MSCA utilizes multiple swarm clusters to diversify & intensify the search in-order to avoid the local minima/maxima problem. Secondly, during update MSCA also checks for better search clusters that offer convergence to global minima effectively. To assess its performance, we tested the MSCA on unimodal, multimodal and composite benchmark functions taken from the literature. Experimental results reveal that the MSCA is statistically superior with regards to convergence as compared to recent state-of-the-art metaheuristic algorithms, including the original SCA.
  5. Jackson AA, Ismail A, Ibrahim TA, Kader ZS, Nawi NM
    PMID: 9139364
    Typhoid fever remains a common problem in Malaysia, but for its diagnosis both blood culture and the Widal test have drawbacks. A dot enzyme immunoassay (EIA) has been developed which detects IgM and IgG antibodies to a specific 50 kDa outer membrane protein on Salmonella typhi. This study was performed among outpatients attending the university hospital in Kelantan, a state on the east coast of Peninsular Malaysia where typhoid is endemic. The dot EIA was done on 149 outpatients of all ages in whom typhoid was suspected. Of these, 60 were not analysable due to insufficient data. The other 89 were retrospectively classed as typhoid (total = 21), or not typhoid (total = 68). The criteria for diagnosis of typhoid was either, blood culture was positive, or with blood culture negative, temperature was at least 38 degrees C and Widal O and/or H titer greater than or equal to 1/160. We then compared the diagnosis with the EIA result. For the result where either IgM or IgG was positive, sensitivity was 90%, specificity 91% and negative predictive value 97%. For IgM positive, specificity was 100%. But the specificity of IgG positive alone was reduced by six false positives, which were probably due to persistence of IgG after acute infection. Other cases were found where IgG positive alone appeared in the first week of typhoid fever, probably due to rapid response in a second or subsequent infection. We also found that IgM-producing patients were significantly younger than those showing IgG alone positive.
    Study site: Community Medicine clinic, Accident & emergency department, Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia
  6. Tagiling N, Mohd-Rohani MF, Wan-Sohaimi WF, Faisham WI, Nawi NM
    Malays Orthop J, 2020 Nov;14(3):188-193.
    PMID: 33403085 DOI: 10.5704/MOJ.2011.032
    Megaprosthesis is used to restore the form and function of massive skeletal defects, but it is accompanied by risks of failure, mainly due to perimegaprosthetic infection (PMI). In practice, the diagnosis of infected megaprosthesis among patients with a high index of clinical suspicion, elevated serological markers, and multiple negative or inconclusive imaging can be very challenging and poses a diagnostic conundrum to many orthopaedic surgeons. We present the case of a symptomatic 26-year-old female with large B-cell lymphoma who developed cellulitis with suspected complication of PMI 15 months post-implantation. The combination of advanced nuclear medicine imaging strategies, i.e., 99mTc-besilesomab/99mTc-sulfur colloid scintigraphy with hybrid single-photon emission computed tomography/computed tomography (SPECT/CT) scanning helps to characterise and delineate both infections. Invasive procedures such as joint aspiration and biopsy were avoided, and the patient was successfully treated with antibiotics. Hence, we report a case where advanced imaging modalities were decisive in the investigation of PMI.
  7. Onwude DI, Hashim N, Janius RB, Nawi NM, Abdan K
    Compr Rev Food Sci Food Saf, 2016 May;15(3):599-618.
    PMID: 33401820 DOI: 10.1111/1541-4337.12196
    The drying of fruits and vegetables is a complex operation that demands much energy and time. In practice, the drying of fruits and vegetables increases product shelf-life and reduces the bulk and weight of the product, thus simplifying transport. Occasionally, drying may lead to a great decrease in the volume of the product, leading to a decrease in storage space requirements. Studies have shown that dependence purely on experimental drying practices, without mathematical considerations of the drying kinetics, can significantly affect the efficiency of dryers, increase the cost of production, and reduce the quality of the dried product. Thus, the use of mathematical models in estimating the drying kinetics, the behavior, and the energy needed in the drying of agricultural and food products becomes indispensable. This paper presents a comprehensive review of modeling thin-layer drying of fruits and vegetables with particular focus on thin-layer theories, models, and applications since the year 2005. The thin-layer drying behavior of fruits and vegetables is also highlighted. The most frequently used of the newly developed mathematical models for thin-layer drying of fruits and vegetables in the last 10 years are shown. Subsequently, the equations and various conditions used in the estimation of the effective moisture diffusivity, shrinkage effects, and minimum energy requirement are displayed. The authors hope that this review will be of use for future research in terms of modeling, analysis, design, and the optimization of the drying process of fruits and vegetables.
  8. Rohani MFM, Yonan SNM, Tagiling N, Zainon WMNW, Udin Y, Nawi NM
    Asian Spine J, 2020 Oct;14(5):629-638.
    PMID: 32213791 DOI: 10.31616/asj.2019.0308
    STUDY DESIGN: Retrospective study.

    PURPOSE: This study aims to semiquantitatively evaluate the standardized uptake value (SUV) of 99mTc-methylene diphosphonate (MDP) radionuclide tracer in the normal vertebrae of breast cancer patients using an integrated single-photon emission computed tomography (SPECT)/computed tomography (CT) scanner.

    OVERVIEW OF LITERATURE: Molecular imaging techniques using gamma cameras and stand-alone SPECT have traditionally been utilized to evaluate metastatic bone diseases. However, these methods lack quantitative analysis capabilities, impeding accurate uptake characterization.

    METHODS: A total of 30 randomly selected female breast cancer patients were enrolled in this study. The SUV mean (SUVmean) and SUV maximum (SUVmax) values for 286 normal vertebrae at the thoracic and lumbar levels were calculated based on the patients' body weight (BW), body surface area (BSA), and lean body mass (LBM). Additionally, 106 degenerative joint disease (DJD) lesions of the spine were also characterized, and both their BW SUVmean and SUVmax values were obtained. A receiver operating characteristic (ROC) curve analysis was then performed to determine the cutoff value of SUV for differentiating DJD from normal vertebrae.

    RESULTS: The mean±standard deviations for the SUVmean and SUVmax in the normal vertebrae displayed a relatively wide variability: 3.92±0.27 and 6.51±0.72 for BW, 1.05±0.07 and 1.75±0.17 for BSA, and 2.70±0.19 and 4.50±0.44 for LBM, respectively. Generally, the SUVmean had a lower coefficient of variation than the SUVmax. For DJD, the mean±standard deviation for the BW SUVmean and SUVmax was 5.26±3.24 and 7.50±4.34, respectively. Based on the ROC curve, no optimal cutoff value was found to differentiate DJD from normal vertebrae.

    CONCLUSIONS: In this study, the SUV of 99mTc-MDP was successfully determined using SPECT/CT. This research provides an approach that could potentially aid in the clinical quantification of radionuclide uptake in normal vertebrae for the management of breast cancer patients.

  9. Elsoragaby S, Yahya A, Nawi NM, Mahadi MR, Mairghany M, Muazu A, et al.
    Heliyon, 2020 Nov;6(11):e05332.
    PMID: 33294651 DOI: 10.1016/j.heliyon.2020.e05332
    Measurement of human energy expenditure during crop production helps in the optimization of production operations and costs by identifying steps which that can benefit from the use of appropriate mechanization technologies. This study measures human energy expenditure associated with all 6 major rice (Oryza sativa L.) cultivation operations using two measurement methods-i.e. conventional human energy expenditure method and direct measurement with a Garmin forerunner 35 body media. The aim of this study was to provide a detailed comparison of these two methods and document the human energy costs in a manner that will identify steps to be taken to help optimize agricultural practices. Results (mean + 95%CL) revealed that the total human energy expenditure obtained through the conventional method was 25.5% higher (33.3 ± 1 versus 26.6 ± 1.3) in transplanting and 26.1% higher (30.3 ± 1.9 versus 24.0 ± 2.1) than the human energy expenditure recorded using the Garmin method in broadcast seeding method. Similarly, during the harvesting operation, the conventional measurement and Garmin measurement methods differed significantly, with the conventional method the human energy expenditure was 89.9% higher (3.2 ± 0.4 versus 1.68 ± 0.2) in the fields using the transplanting and 88.7% higher (3.3 ± 0.5 versus 1.8 ± 0.3) in the fields using the broadcast seeding than the human energy expenditure recorded using the Garmin method. When using Garmin method, the human energy expenditure in the case of using the midsize combine harvester was 13.49% lesser (592.4 ± 67.2 versus 522.0 ± 75.1) than the case of using conventional one. Results based on heart rate also indicated that operations such as tillage were less intensive (72 ± 3.3 bpm) compared with operations such as chemicals spraying (135 ± 4 bpm). Although we did not have a criterion measure available to determine which method was the most accurate, the Garmin measurement gives an estimate of actual physical human energy expended in performing a specific task with consider all conditions and thus more information to aid in identifying critical operations that could be optimized and mechanized.
  10. Umar S, Man N, Nawi NM, Latif IA, Samah BA
    Eval Program Plann, 2017 Feb 06;62:9-14.
    PMID: 28192728 DOI: 10.1016/j.evalprogplan.2017.02.001
    The study described the perceived importance of, and proficiency in core agricultural extension competencies among extension workers in Peninsular Malaysia; and evaluating the resultant deficits in the competencies. The Borich's Needs Assessment Model was used to achieve the objectives of the study. A sample of 298 respondents was randomly selected and interviewed using a pre-tested structured questionnaire. Thirty-three core competency items were assessed. Instrument validity and reliability were ensured. The cross-sectional data obtained was analysed using SPSS for descriptive statistics including mean weighted discrepancy score (MWDS). Results of the study showed that on a scale of 5, the most important core extension competency items according to respondents' perception were: "Making good use of information and communication technologies/access and use of web-based resources" (M=4.86, SD=0.23); "Conducting needs assessments" (M=4.84, SD=0.16); "organizing extension campaigns" (M=4.82, SD=0.47) and "Managing groups and teamwork" (M=4.81, SD=0.76). In terms of proficiency, the highest competency identified by the respondents was "Conducting farm and home visits (M=3.62, SD=0.82) followed by 'conducting meetings effectively' (M=3.19, SD=0.72); "Conducting focus group discussions" (M=3.16, SD=0.32) and "conducting community forums" (M=3.13, SD=0.64). The discrepancies implying competency deficits were widest in "Acquiring and allocating resources" (MWDS=12.67); use of information and communication technologies (ICTs) and web-based resources in agricultural extension (MWDS=12.59); and report writing and sharing the results and impacts (MWDS=11.92). It is recommended that any intervention aimed at developing the capacity of extension workers in Peninsular Malaysia should prioritize these core competency items in accordance with the deficits established in this study.
  11. Rehman MZ, Zamli KZ, Almutairi M, Chiroma H, Aamir M, Kader MA, et al.
    PLoS One, 2021;16(12):e0259786.
    PMID: 34855771 DOI: 10.1371/journal.pone.0259786
    Team formation (TF) in social networks exploits graphs (i.e., vertices = experts and edges = skills) to represent a possible collaboration between the experts. These networks lead us towards building cost-effective research teams irrespective of the geolocation of the experts and the size of the dataset. Previously, large datasets were not closely inspected for the large-scale distributions & relationships among the researchers, resulting in the algorithms failing to scale well on the data. Therefore, this paper presents a novel TF algorithm for expert team formation called SSR-TF based on two metrics; communication cost and graph reduction, that will become a basis for future TF's. In SSR-TF, communication cost finds the possibility of collaboration between researchers. The graph reduction scales the large data to only appropriate skills and the experts, resulting in real-time extraction of experts for collaboration. This approach is tested on five organic and benchmark datasets, i.e., UMP, DBLP, ACM, IMDB, and Bibsonomy. The SSR-TF algorithm is able to build cost-effective teams with the most appropriate experts-resulting in the formation of more communicative teams with high expertise levels.
  12. Singh S, Meher N, Mohammed A, Razab MKAA, Bhaskar LVKS, Nawi NM
    Medicine (Baltimore), 2023 Feb 03;102(5):e30284.
    PMID: 36749239 DOI: 10.1097/MD.0000000000030284
    The primary target of severe acute respiratory syndrome coronavirus 2 is the respiratory system including the nose and lungs, however, it can also damage the kidneys, cardiovascular system and gastrointestinal system. Many recent reports suggested that severe acute respiratory syndrome coronavirus 2 infections can also affect the central nervous system as well as peripheral nervous system that lead to the several neurological complications. The virus can break the blood brain barrier and enters the brain via haematological route or directly by the angiotensin-converting enzyme 2 receptors present on endothelial cells of many cerebral tissues. The neurological complications are manifested by headache, dizziness, encephalopathy, encephalitis, cerebrovascular disease, anosmia, hypogeusia, muscle damage, etc. This review article described the possible routes and mechanism of nervous system infection and the range of neurological complications of COVID-19 that may help the medical practitioners and researchers to improve the clinical treatment and reduce the mortality rate among patients with viral diseases.
  13. Chiroma H, Abdul-kareem S, Khan A, Nawi NM, Gital AY, Shuib L, et al.
    PLoS One, 2015;10(8):e0136140.
    PMID: 26305483 DOI: 10.1371/journal.pone.0136140
    Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research.
  14. Saminathan ST, Ahmed WAW, Nawi NM, Tagiling N, Aziz I, Udin Y, et al.
    Asian Spine J, 2024 Jun;18(3):398-406.
    PMID: 38917860 DOI: 10.31616/asj.2022.0451
    STUDY DESIGN: Retrospective study.

    PURPOSE: To compare and correlate technetium-99m methylene diphosphonate uptake between benign and metastatic bone lesions using semiquantitative analysis of maximum standard uptake value (SUVmax) and mean Hounsfield unit (HU) in single-photon emission computed tomography-computed tomography (SPECT-CT).

    OVERVIEW OF LITERATURE: Qualitative interpretation of metastatic bone lesions in breast cancer on bone scintigraphy is often complicated by coexisting benign lesions.

    METHODS: In total, 185 lesions were identified on bone and SPECT-CT scans from 32 patients. Lesions were classified as metastatic (109 sclerotic lesions) and benign (76 lesions) morphologically on low-dose CT. Semiquantitative analysis using SUVmax and mean HU was performed on the lesions and compared. To discriminate benign and metastatic lesions, the correlation between SUVmax and mean HU was determined using the intraclass correlation coefficients.

    RESULTS: The SUVmax was higher in metastatic lesions (20.66±14.36) but lower in benign lesions (10.18±12.79) (p<0.001). The mean HU was lower in metastatic lesions (166.62±202.02) but higher in benign lesions (517.65±192.8) (p<0.001). A weak negative correlation was found between the SUVmax and the mean HU for benign lesions, and a weak positive correlation was noted between the SUVmax and the mean HU on malignant lesions with no statistical significance (p=0.394 and 0.312, respectively). The cutoff values obtained were 10.8 for SUVmax (82.6% sensitivity and 84.2% specificity) and 240.86 for the mean HU (98.7% sensitivity and 88.1% specificity) in differentiating benign from malignant bone lesions.

    CONCLUSIONS: Semiquantitative assessment using SUVmax and HU can complement qualitative analysis. Metastatic lesions had higher SUVmax but lower mean HU than benign lesions, whereas benign lesions demonstrated higher mean HU but lower SUVmax. A weak correlation was found between the SUVmax and the mean HU on malignant and benign lesions. Cutoff values of 10.8 for the SUVmax and 240.86 for the mean HU may differentiate bone metastases from benign lesions.

  15. Sunaiwi R, Gaur R, Azhar Abdul Razab MK, Hadzuan FH, Nawi NM, Abdul Aziz MZ, et al.
    Heliyon, 2024 Oct 15;10(19):e38682.
    PMID: 39403514 DOI: 10.1016/j.heliyon.2024.e38682
    Patients undergoing high-dose radioiodine ablation (RAI) therapy in Nuclear Medicine Department need to be isolated in a special designed ward for a few days. Large amount of clinical radioactive wastewater from patient body is produced during high-activity RAI therapy. The radioactive wastewater needs to store in a delay tank until the radioactivity decayed below acceptable limit before being discharged and indirectly limit the patient admission and treatment. This study is to propose an alternative antibacterial adsorbent for I-131 extraction from clinical radioactive wastewater at the nuclear medicine department using graphene oxide silver (GOAg) and bamboo activated carbon (BAC). The synthesised adsorbents and their sediments (filtered sample) were analysed using field emission scanning electron microscopy (FESEM) for morphological analysis and analysed using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). XPS spectra for C 1s adsorbents show intensity peaks at 284.45 eV (C=C) and 285.3 eV (C-C) for GOAg and its sediments, and 284.35 eV (C-C), 287.00 eV (C=O), and 290.07 eV (π-π∗ transitions) for BAC and its sediments. FTIR spectra reveal various functional groups of adsorbents: C=C (1637.50772 cm-1), C=O (1340.48041 cm-1), and C-O-C (1031.88060 cm-1) for GOAg and its sediments, and C=C (1635.57897 cm-1), C-C (1257.54421 cm-1), and C-O (1188.10925 cm-1) for BAC and its sediments. XRD patterns exhibit peaks at 2θ = 27.82°, 29.39°, 32.24°, and 46.22°, which can be attributed to the (002) diffraction plane, (220) crystallographic plane, (111) plane of Ag2O, and (200) crystallographic plane, respectively, for GOAg and its sediments. Meanwhile, the peaks at 2θ = 26.56° and 42.41°, which correspond to (002) and (100) planes, respectively, for BAC and its sediments. The d-spacing and the crystallinity index of each adsorbent were also determined. The estimation of the remaining β- particles during the adsorption of I-131 was carried out using PHITS. The finding of this study is beneficial for alternative radionuclide extractions technique from clinical radioactive wastewater in nuclear medicine.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links