CONTENT: Databases search of Scopus, ScienceDirect, PubMed, Directory of Open Access Journals (DOAJ), Cumulative Index to Nursing and Allied Health Literature (CINAHL) Plus, MyJournal, Biblioteca Regional de Medicina (BIREME), BioMed Central (BMC) Public Health, Medline, Commonwealth Agricultural Bureaux (CAB), EMBASE (Excerpta Medica dataBASE) OVID, and Web of Science (WoS) was performed, which include the article from 1st January 2008 until 31st August 2018 using medical subject heading (MeSH). Articles initially identified were screened for relevance.
SUMMARY: Out of 744 papers screened, nine eligible studies did meet our inclusion criteria. Prison and housing environments were evaluated for TB transmission in living environment, while the other factor was urbanization. However, not all association for these factors were statistically significant, thus assumed to be conflicting or weak to end up with a strong conclusion.
OUTLOOK: Unsustainable indoor environment in high congregate setting and overcrowding remained as a challenge for TB infection in Malaysia. Risk factors for transmission of TB, specifically in high risk areas, should focus on the implementation of specialized program. Further research on health care environment, weather variability, and air pollution are urgently needed to improve the management of TB transmission.
Methods: The sociodemographic data of 3325 TB cases from January 2013 to December 2017 in Gombak district were collected from the MyTB web and TB Information System database. Environmental data were obtained from the Department of Environment, Malaysia; Department of Irrigation and Drainage, Malaysia; and Malaysian Metrological Department from July 2012 to December 2017. Multiple linear regression (MLR) and artificial neural network (ANN) were used to develop the prediction model of TB cases. The models that used sociodemographic variables as the input datasets were referred as MLR1 and ANN1, whereas environmental variables were represented as MLR2 and ANN2 and both sociodemographic and environmental variables together were indicated as MLR3 and ANN3.
Results: The ANN was found to be superior to MLR with higher adjusted coefficient of determination (R2) values in predicting TB cases; the ranges were from 0.35 to 0.47 compared to 0.07 to 0.14, respectively. The best TB prediction model, that is, ANN3 was derived from nationality, residency, income status, CO, NO2, SO2, PM10, rainfall, temperature, and atmospheric pressure, with the highest adjusted R2 value of 0.47, errors below 6, and accuracies above 96%.
Conclusions: It is envisaged that the application of the ANN algorithm based on both sociodemographic and environmental factors may enable a more accurate modeling for predicting TB cases.