Ninety-five specimens of 14 freshwater fish species from small streams in the Kuala Terengganu district and the Lake Kenyir Reservoir, Malaysia, were surveyed for coccidian infections. Six fish species proved to be infected with apicomplexans belonging to the genus Goussia. In all of these fishes Goussia species were found in unsporulated and semisporulated stages. Oöcysts of four species inhabiting the intestinal epithelium became sporulated in tap-water within 24 hours. In two fish species sporulation failed and only unsporulated oöcysts were recorded in the intestine. Three of the intestinal species finishing sporulation proved to be new to science and were described as Goussia malayensis n. sp., G. bettae n. sp. and G. pogonognathi n. sp. from Apocheilus panchax, Betta splendens and Hemirhamphodon pogonognatus, respectively. The fourth species, found in Trichogaster pectoralis, was identified as G. trichogasteri Székely & Molnár, 1992, a species known from aquarium-cultured T. trichopterus.
Cage-cultured Asian redtail catfish Hemibagrus nemurus (Valenciennes, 1840), a popular food fish in Southeast Asia, proved to be infected by 3 myxozoan species. All the 3 species belonged to the genus Henneguya: 2 were identified as H. mystusia Sarkar, 1985 and H. hemibagri Tchang et Ma, 1993, while the other was described as H. basifilamentalis sp. n. All plasmodia were found in the gills and were characterised by a specific site selection. H. mystusia formed plasmodia in the multi-layered epithelium between the gill lamellae and in the non-lamellar edge of the gill filaments, while H. hemibagri developed in the capillary network of the lamellae. H. basifilamentalis sp. n. had large oval plasmodia located deep among the filaments just above the gill arch.
Cage-cultured sutchi catfish Pangasius hypophthalmus (Sauvage, 1878), a favourite food fish in Southeast Asia, proved to be infected by 6 myxozoan species. Three species belonged to the genus Hennegoides (H. berlandi, H. malayensis, and H. pangasii), 1 to Henneguya (H. shariffi) and 2 to Myxobolus (M. baskai, and M. pangasii). Five myxozoans infected the gills and 1 was found on the spleen. Myxozoans infecting the gills were characterised by a specific site selection. H. shariffi sp. n. and H. berlandi sp. n. formed plasmodia in the multi-layered epithelium of the gill filaments. Of the 2 vascular species H. pangasii sp. n. developed in the gill arteries, while M. baskai sp. n. infected the capillary network of the gill lamellae. Plasmodia of H. malayensis sp. n. were found inside the cartilaginous gill rays of the filaments. Large plasmodia of M. pangasii sp. n. were located in a groove of the spleen but they affected only the serosa layer covering the spleen.
We describe new myxosporean species from Malaysian fishes cultured in pond farms and net-cages. Myxobolus omari sp. nov. and M. leptobarbi sp. nov. were found in the muscles of Pangasianodon hypophthalmus and Leptobarbus hoevenii, respectively, while plasmodia and spores of Thelohanellus zahrahae sp. nov. and Henneguya daoudi sp. nov. were detected in the gills of Barbonymus gonionotus and Trichogaster trichopterus, respectively. Plasmodia and spores found in these fishes differed from the known myxosporean species in respect of their morphology, tissue tropism and 18S rDNA structure. No major pathological changes were found, but in the future these species might pose a potential threat to more intensified fish culture.
During a survey on fishes of the Tasik Kenyir Reservoir, Malaysia, 5 new Myxobolus spp. and 2 known Henneguya spp. were found. The specific locations for 2 Myxobolus spp. were the host's muscles, while 2 other Myxobolus spp. were found to develop in the host's kidney and gills, respectively. Of the species developing intracellularly in muscle cells, M. terengganuensis sp. nov. was described from Osteochilus hasselti and M. tasikkenyirensis sp. nov. from Osteochilus vittatus. M. csabai sp. nov. and M. osteochili sp. nov. were isolated from the kidney of Osteochilus hasselti, while M. dykovae sp. nov. was found in the gill lamellae of Barbonymus schwanenfeldii. Henneguya shaharini and Henneguya hemibagri plasmodia were found on the gills of Oxyeleotris marmoratus and Hemibagrus nemurus, respectively. Description of the new and known species was based on morphological characterization of spores, histological findings on locations of plasmodia and DNA sequence data.
Molecular and morphometric investigations were conducted on the actinosporean morphotypes of myxosporeans surveyed in oligochaetes of Lake Balaton and Kis-Balaton Water reservoir. Oligochaetes belonging to the species Isochaetides michaelseni Lastočkin and Branchiura sowerbyi Beddard as well as to the genera Nais Dujardin, Dero Müller and Aeolosoma Ehrenberg were studied during an 18-month period. Actinosporeans were obtained exclusively from I. michaelseni (7,818 specimens) with very low prevalence (0.01-0.06%). Four new actinosporean morphotypes of the collective groups raabeia (2 types), synactinomyxon (1 type) and neoactinomyxum (1 type) were found and described, including the first synactinomyxon collective group from Hungarian biotopes and a new raabeia morphotype. Except for Synactinomyxon type 1, the 18S rDNA analysis revealed that the spores did not match any myxospore entity found in the GenBank.
Culturing fishes in marine cages is a rapidly developing area of marine aquaculture. The Asian seabass Lates calcarifer (Bloch) is a fast growing good quality fish that is readily cultured in intensive systems in the South Asian region and in Malaysia in particular. Although several papers have been published to date on viral, bacterial, parasitic and fungal organisms causing diseases in the Asian seabass, the occurrence of a coccidian infection in this species has only recently been recorded. We collected sporulated and unsporulated oöcysts of a new species of Goussia Labbé, 1986, from the mucus covering the epithelium of the intestine of L. calcarifer. This paper provides a description of Goussia kuehae n. sp. Sporulated oöcysts of this species are ellipsoidal, 37-40 μm in length and 28-30 μm in width. The ellipsoidal sporocysts are relatively small, 15.2-17 × 5.7-8 μm, and located loosely in the oöcyst. There are residual bodies both in the oöcysts and the sporocysts. Goussia kuehae n. sp. differs from all known species of Goussia in the large size of the oöcysts and in having two types of oöcyst residuum.
The authors studied the myxosporean infection of wild gobiid fishes (Perciformes: Gobioidei) in the Merang Estuary of Terengganu, Malaysia, and described Myxobolus ophiocarae sp. n. in Ophiocara porocephala. Several myxosporean plasmodia were found intralamellarly within the gill filaments. The spores differed from those of other Myxobolus species previously recorded on gobiid fishes. They were round in valvular view and lens-shaped in sutural view, and had two equal-sized, pyriform polar capsules with polar filaments having six to seven turns. The spores measured 10.34 × 8.79 × 4.53 μm. The 18S rDNA sequence of M. ophiocarae sp. n., based on a contiguous sequence of 1,789 base pairs, differed from any other Myxobolus spp. in GenBank. Phylogenetic analysis of the 18S rDNA gene revealed that this species showed the closest similarity to Myxobolus nagaraensis, Myxobolus lentisuturalis, and Myxobolus cultus.
Tor tambroides, a common and appreciated cyprinid fish of the Tasik Kenyir water reservoir in Malaysia, is one of the species selected for propagation. This fish was first successfully propagated in Malaysia by the Department of Agriculture, Sarawak, Malaysia, and the breeding program continued throughout the country. The gills were frequently infected by a Myxobolus species to be described as Myxobolus tambroides sp. n. The small, 50 to 70 μm, round plasmodia of this species is located intralamellarly. Plasmodia were filled with pyriform myxospores, 9.9 and 7.4 μm wide. In sutural view, the caudal end of the myxospores had a distinctive valvular groove, parallel with the suture. Plasmodia caused deformations on the affected and the neighbouring gill lamellae. The 18S rDNA sequence of M. tambroides sp.n. did not show a close relationship with any other Myxobolus spp., represented in the GenBank. This might be an emerging parasite likely to impact the propagation of this fish.
Thelohanellus nikolskii, Achmerov, 1955 is a well-known myxozoan parasite of the common carp (Cyprinus carpio L.). Infection regularly manifests in numerous macroscopic cysts on the fins of two to three month-old pond-cultured carp fingerlings in July and August. However, a Thelohanellus infection is also common on the scales of two to three year-old common carp in ponds and natural waters in May and June. Based on myxospore morphology and tissue specificity, infection at both sites seems to be caused by the same species, namely T. nikolskii. This presumption was tested with molecular biological methods: SSU rDNA sequences of myxospores from fins of fingerlings and scales of older common carp were analysed and compared with each other and with related species available in GenBank. Sequence data revealed that the spores from the fins and scales represent the same species, T. nikolskii. Our study revealed a dichotomy in both infection site and time in T. nikolskii-infections: the fins of young carp are infected in Summer and Autumn, whereas the scales of older carp are infected in Spring. Myxosporean development of the species is well studied, little is known, however about the actinosporean stage of T. nikolskii. A previous experimental study suggests that aurantiactinomyxon actinospores of this species develop in Tubifex tubifex, Müller, 1774. The description included spore morphology but no genetic sequence data (Székely et al., 1998). We examined >9000 oligochaetes from Lake Balaton and Kis-Balaton Water Reservoire searching for the intraoligochaete developmental stage of myxozoans. Five oligochaete species were examined, Isochaetides michaelseni Lastochin, 1936, Branchiura sowerbyi Beddard, 1892, Nais sp., Müller, 1774, Dero sp. Müller, 1774 and Aelosoma sp. Ehrenberg, 1828. Morphometrics and SSU rDNA sequences were obtained for the released actinospores. Among them, from a single Nais sp., the sequence of an aurantiactinomyxon isolate corresponded to the myxospore sequences of T. nikolskii.
This study was a co-operative investigation of myxosporean infections of Notopterus notopterus, the bronze featherback, which is a popular food fish in the South Asian region. We examined fish from Lake Kenyir, Malaysia and the River Ganga, Hastinapur, Uttar Pradesh, India, and observed infections with two myxosporeans: Myxidium cf. notopterum (Myxidiidae) and Henneguya ganapatiae (Myxobolidae), respectively. These species were identified by myxospore morphology, morphometry and host tissue affinity, and the original descriptions supplemented with small-subunit ribosomal DNA sequences and phylogenetic analysis. Free myxospores of M. cf. notopterum were found in the gallbladder, and measured 14.7 ± 0.6 μm long and 6.3 ± 0.6 μm wide; host, tissue and myxospore dimensions overlapped with the type, but differed in morphological details (spore shape, valve cell ridges) and locality (Malaysia versus India). Plasmodia and spores of H. ganapatiae were observed in gills, and myxospores had a spore body 9.7 ± 0.4 μm long, 4.5 ± 0.5 μm wide; sample locality, host, tissue, spore morphology and morphometry matched the original description. Small-subunit ribosomal DNA sequences were deposited in GenBank (M. cf. notopterum MT365527, H. ganapatiae MT365528) and both differed by >7% from congeneric species. Although the pathogenicity and clinical manifestation of myxozoan in humans are poorly understood, consumption of raw fish meat with myxozoan infection was reported to be associated with diarrhea. Identification of current parasite fauna from N. notopterus is an essential first step in assessing pathogen risks to stocks of this important food fish.
Examination of 35 barramundi (Lates calcarifer) from aquaculture cages in Setiu Wetland, Malaysia, revealed a single fish infected with three Henneguya spp. (Cnidaria: Myxosporea). Characterization of the infections using tissue tropism, myxospore morphology and morphometry and 18S rDNA sequencing supported description of three new species: Henneguya setiuensis n. sp., Henneguya voronini n. sp. and H. calcarifer n. sp. Myxospores of all three species had typical Henneguya morphology, with two polar capsules in the plane of the suture, an oval spore body, smooth valve cell surfaces, and two caudal appendages. Spores were morphometrically similar, and many dimensions overlapped, but H. voronini n. sp. had shorter caudal appendages compared with H. calcarifer n. sp. and H. setiuensis n. sp. Gross tissue tropism distinguished the muscle parasite H. calcarifer n. sp. from gill parasites H. setiuensis n. sp. and H. voronini n. sp.; and these latter two species were further separable by fine-scale location of developing plasmodia, which were intra-lamellar for H. setiuensis n. sp. and basal to the filaments for H. voronini n. sp. small subunit ribosomal DNA sequences distinguished all three species: the two gill species H. setiuensis n. sp. and H voronini n. sp. were only 88% similar (over 1708 bp), whereas the muscle species H. calcarifer n. sp. was most similar to H. voronini n. sp. (98% over 1696 bp). None of the three novel species was more than 90% similar to any known myxosporean sequence in GenBank. Low infection prevalence of these myxosporeans and lack of obvious tissue pathology from developing plasmodia suggested none of these parasites are currently a problem for barramundi culture in Setiu Wetland; however additional surveys of fish, particularly at different times of the year, would be informative for better risk assessment.