Displaying all 2 publications

Abstract:
Sort:
  1. Mohd Azmi UZ, Yusof NA, Kusnin N, Abdullah J, Suraiya S, Ong PS, et al.
    Sensors (Basel), 2018 Nov 14;18(11).
    PMID: 30441776 DOI: 10.3390/s18113926
    A rapid and sensitive sandwich electrochemical immunosensor was developed based on the fabrication of the graphene/polyaniline (GP/PANI) nanocomposite onto screen-printed gold electrode (SPGE) for detection of tuberculosis biomarker 10-kDa culture filtrate protein (CFP10). The prepared GP/PANI nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The chemical bonding and morphology of GP/PANI-modified SPGE were studied by Raman spectroscopy and FESEM coupled with energy dispersive X-ray spectroscopy, respectively. From both studies, it clearly showed that GP/PANI was successfully coated onto SPGE through drop cast technique. Cyclic voltammetry was used to study the electrochemical properties of the modified electrode. The effective surface area for GP/PANI-modified SPGE was enhanced about five times compared with bare SPGE. Differential pulse voltammetry was used to detect the CFP10 antigen. The GP/PANI-modified SPGE that was fortified with sandwich type immunosensor exhibited a wide linear range (20⁻100 ng/mL) with a low detection limit of 15 ng/mL. This proposed electrochemical immunosensor is sensitive, low sample volume, rapid and disposable, which is suitable for tuberculosis detection in real samples.
  2. Mohd Azmi UZ, Yusof NA, Abdullah J, Alang Ahmad SA, Mohd Faudzi FN, Ahmad Raston NH, et al.
    Mikrochim Acta, 2021 01 06;188(1):20.
    PMID: 33404779 DOI: 10.1007/s00604-020-04669-x
    An early detection of Mycobacterium tuberculosis is very important to reduce the number of fatal cases and allow for fast recovery. However, the interpretation of the result from smear microscopy requires skilled personnel due to the propensity of the method to produce false-negative results. In this work, a portable, rapid, and simple sandwich-type immunosensor reader has been developed that is able to detect the presence of M. tuberculosis in sputum samples. By using sandwich-type immunosensor, an anti-CFP10-ESAT6 antibody was immobilized onto the graphene/polyaniline (GP/PANI)-modified gold screen-printed electrode. After incubation with the target CFP10-ESAT6 antigen, the iron/gold magnetic nanoparticles (Fe3O4/Au MNPs) conjugated with anti-CFP10-ESAT6 antibody were used to complete the sandwich format. Differential pulse voltammetry (DPV) technique was used to detect the CFP10-ESAT6 antigen at the potential range of 0.0-1.0 V. The detection time is less than 2 h. Under optimal condition, CFP10-ESAT6 antigen was detected in a linear range from 10 to 500 ng mL-1 with a limit of detection at 1.5 ng mL-1. The method developed from this process was then integrated into a portable reader. The performance of the sensor was investigated and compared with the standard methods (culture and smear microscopy). It provides a good correlation (100% sensitivity and 91.7% specificity) with both methods of detection for M. tuberculosis in sputum samples henceforth, demonstrating the potential of the device as a more practical screening tool.Graphical abstract.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links