Organically (octyl amine, OA) surface modified electrocatalyst (OA-Pt/CB) was studied for its oxygen reduction reaction (ORR) activity via dc methods and its charge and mass transfer properties were studied via electrochemical impedance spectroscopy (EIS). Comparison with a commercial catalyst (TEC10V30E) with similar Pt content was also carried out. In EIS, both the catalysts showed a single time-constant with an emerging high-frequency semicircle of very small diameter which was fitted using suitable equivalent circuits. The organically modified catalyst showed lower charge-transfer resistance and hence, low polarization resistance in high potential region as compared to the commercial catalyst. The dominance of kinetic processes was observed at 0.925-1.000 V, whereas domination of diffusion based processes was observed at lower potential region for the organic catalyst. No effect due to the presence of carbon was observed in the EIS spectra. Using the hydrodynamic method, higher current penetration depth was obtained for the organically modified catalyst at 1600 rpm. Exchange current density and Tafel slopes for both the electrocatalysts were calculated from the polarization resistance obtained from EIS which was in correlation with the results obtained from dc methods.
We report the observation of ϒ(2S)→γη_{b}(1S) decay based on an analysis of the inclusive photon spectrum of 24.7 fb^{-1} of e^{+}e^{-} collisions at the ϒ(2S) center-of-mass energy collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. We measure a branching fraction of B[ϒ(2S)→γη_{b}(1S)]=(6.1_{-0.7-0.6}^{+0.6+0.9})×10^{-4} and derive an η_{b}(1S) mass of 9394.8_{-3.1-2.7}^{+2.7+4.5} MeV/c^{2}, where the uncertainties are statistical and systematic, respectively. The significance of our measurement is greater than 7 standard deviations, constituting the first observation of this decay mode.
We present the first measurements of absolute branching fractions of Ξ_{c}^{0} decays into Ξ^{-}π^{+}, ΛK^{-}π^{+}, and pK^{-}K^{-}π^{+} final states. The measurements are made using a dataset comprising (772±11)×10^{6} BB[over ¯] pairs collected at the ϒ(4S) resonance with the Belle detector at the KEKB e^{+}e^{-} collider. We first measure the absolute branching fraction for B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0} using a missing-mass technique; the result is B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})=(9.51±2.10±0.88)×10^{-4}. We subsequently measure the product branching fractions B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→Ξ^{-}π^{+}), B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→ΛK^{-}π^{+}), and B(B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0})B(Ξ_{c}^{0}→pK^{-}K^{-}π^{+}) with improved precision. Dividing these product branching fractions by the result for B^{-}→Λ[over ¯]_{c}^{-}Ξ_{c}^{0} yields the following branching fractions: B(Ξ_{c}^{0}→Ξ^{-}π^{+})=(1.80±0.50±0.14)%, B(Ξ_{c}^{0}→ΛK^{-}π^{+})=(1.17±0.37±0.09)%, and B(Ξ_{c}^{0}→pK^{-}K^{-}π^{+})=(0.58±0.23±0.05)%. For the above branching fractions, the first uncertainties are statistical and the second are systematic. Our result for B(Ξ_{c}^{0}→Ξ^{-}π^{+}) can be combined with Ξ_{c}^{0} branching fractions measured relative to Ξ_{c}^{0}→Ξ^{-}π^{+} to yield other absolute Ξ_{c}^{0} branching fractions.
We report on the first Belle search for a light CP-odd Higgs boson, A^{0}, that decays into low mass dark matter, χ, in final states with a single photon and missing energy. We search for events produced via the dipion transition ϒ(2S)→ϒ(1S)π^{+}π^{-}, followed by the on-shell process ϒ(1S)→γA^{0} with A^{0}→χχ, or by the off-shell process ϒ(1S)→γχχ. Utilizing a data sample of 157.3×10^{6} ϒ(2S) decays, we find no evidence for a signal. We set limits on the branching fractions of such processes in the mass ranges M_{A^{0}}<8.97 GeV/c^{2} and M_{χ}<4.44 GeV/c^{2}. We then use the limits on the off-shell process to set competitive limits on WIMP-nucleon scattering in the WIMP mass range below 5 GeV/c^{2}.
We report the results of a search for the rare, purely leptonic decay B^{-}→μ^{-}ν[over ¯]_{μ} performed with a 711 fb^{-1} data sample that contains 772×10^{6} BB[over ¯] pairs, collected near the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. The signal events are selected based on the presence of a high momentum muon and the topology of the rest of the event showing properties of a generic B-meson decay, as well as the missing energy and momentum being consistent with the hypothesis of a neutrino from the signal decay. We find a 2.4 standard deviation excess above background including systematic uncertainties, which corresponds to a branching fraction of B(B^{-}→μ^{-}ν[over ¯]_{μ})=(6.46±2.22±1.60)×10^{-7} or a frequentist 90% confidence level interval on the B^{-}→μ^{-}ν[over ¯]_{μ} branching fraction of [2.9,10.7]×10^{-7}.
We report the first observation of the hadronic transition ϒ(4S)→η^{'}ϒ(1S), using 496 fb^{-1} data collected at the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. We reconstruct the η^{'} meson through its decays to ρ^{0}γ and to π^{+}π^{-}η, with η→γγ. We measure B(ϒ(4S)→η^{'}ϒ(1S))=[3.43±0.88(stat)±0.21(syst)]×10^{-5}, with a significance of 5.7σ.
We present first evidence that the cosine of the CP-violating weak phase 2β is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of B^{0}→D^{(*)}h^{0} with D→K_{S}^{0}π^{+}π^{-} decays, where h^{0}∈{π^{0},η,ω} denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the ϒ(4S) resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471±3)×10^{6}BB[over ¯] pairs recorded by the BABAR detector and (772±11)×10^{6}BB[over ¯] pairs recorded by the Belle detector. The results of the measurement are sin2β=0.80±0.14(stat)±0.06(syst)±0.03(model) and cos2β=0.91±0.22(stat)±0.09(syst)±0.07(model). The result for the direct measurement of the angle β of the CKM Unitarity Triangle is β=[22.5±4.4(stat)±1.2(syst)±0.6(model)]°. The measurement assumes no direct CP violation in B^{0}→D^{(*)}h^{0} decays. The quoted model uncertainties are due to the composition of the D^{0}→K_{S}^{0}π^{+}π^{-} decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics e^{+}e^{-}→cc[over ¯] data sample. CP violation is observed in B^{0}→D^{(*)}h^{0} decays at the level of 5.1 standard deviations. The significance for cos2β>0 is 3.7 standard deviations. The trigonometric multifold solution π/2-β=(68.1±0.7)° is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.