Displaying all 3 publications

Abstract:
Sort:
  1. Nadimi-Shahraki MH, Fatahi A, Zamani H, Mirjalili S, Abualigah L
    Entropy (Basel), 2021 Dec 06;23(12).
    PMID: 34945943 DOI: 10.3390/e23121637
    Moth-flame optimization (MFO) algorithm inspired by the transverse orientation of moths toward the light source is an effective approach to solve global optimization problems. However, the MFO algorithm suffers from issues such as premature convergence, low population diversity, local optima entrapment, and imbalance between exploration and exploitation. In this study, therefore, an improved moth-flame optimization (I-MFO) algorithm is proposed to cope with canonical MFO's issues by locating trapped moths in local optimum via defining memory for each moth. The trapped moths tend to escape from the local optima by taking advantage of the adapted wandering around search (AWAS) strategy. The efficiency of the proposed I-MFO is evaluated by CEC 2018 benchmark functions and compared against other well-known metaheuristic algorithms. Moreover, the obtained results are statistically analyzed by the Friedman test on 30, 50, and 100 dimensions. Finally, the ability of the I-MFO algorithm to find the best optimal solutions for mechanical engineering problems is evaluated with three problems from the latest test-suite CEC 2020. The experimental and statistical results demonstrate that the proposed I-MFO is significantly superior to the contender algorithms and it successfully upgrades the shortcomings of the canonical MFO.
  2. Sumit SS, Rambli DRA, Mirjalili S, Miah MSU, Ejaz MM
    MethodsX, 2023;10:101936.
    PMID: 36578294 DOI: 10.1016/j.mex.2022.101936
    Human detection is an important task in computer vision. It is one of the most important tasks in global security and safety monitoring. In recent days, Deep Learning has improved human detection technology. Despite modern techniques, there are very few optimal techniques to construct networks with a small size, deep architecture, and fast training time while maintaining accuracy. ReSTiNet is a novel small convolutional neural network that overcomes the problems of network size, detection speed, and accuracy. The developed ReSTiNet contains fire modules by evaluating their number and position in the network to minimize the model parameters and network size. To improve the detection speed and accuracy of ReSTiNet, the residual block within the fire modules is carefully designed to increase the feature propagation and maximize the information flow in the network. The developed approach compresses the well-known Tiny-YOLO architecture while improving the following features: (i) small model size, (ii) faster detection speed, (iii) resolution of overfitting, and (iv) better performance than other compact networks such as SqueezeNet and MobileNet in terms of mAP on the Pascal VOC and MS COCO datasets. ReSTiNet is 10.7 MB, five times smaller than Tiny-YOLO. On Tesla k80, mAP is 27.3% for MS COCO and 63.74% for PASCAL VOC. The validation of the proposed ReSTiNet model has been done on INRIA person dataset using the Tesla K80.•All the necessary steps, algorithms, and mathematical formulas for building the net- work are provided.•The network is small in size but has a faster detection speed with high accuracy.
  3. Khafaga DS, Ibrahim A, El-Kenawy EM, Abdelhamid AA, Karim FK, Mirjalili S, et al.
    Diagnostics (Basel), 2022 Nov 21;12(11).
    PMID: 36428952 DOI: 10.3390/diagnostics12112892
    Human skin diseases have become increasingly prevalent in recent decades, with millions of individuals in developed countries experiencing monkeypox. Such conditions often carry less obvious but no less devastating risks, including increased vulnerability to monkeypox, cancer, and low self-esteem. Due to the low visual resolution of monkeypox disease images, medical specialists with high-level tools are typically required for a proper diagnosis. The manual diagnosis of monkeypox disease is subjective, time-consuming, and labor-intensive. Therefore, it is necessary to create a computer-aided approach for the automated diagnosis of monkeypox disease. Most research articles on monkeypox disease relied on convolutional neural networks (CNNs) and using classical loss functions, allowing them to pick up discriminative elements in monkeypox images. To enhance this, a novel framework using Al-Biruni Earth radius (BER) optimization-based stochastic fractal search (BERSFS) is proposed to fine-tune the deep CNN layers for classifying monkeypox disease from images. As a first step in the proposed approach, we use deep CNN-based models to learn the embedding of input images in Euclidean space. In the second step, we use an optimized classification model based on the triplet loss function to calculate the distance between pairs of images in Euclidean space and learn features that may be used to distinguish between different cases, including monkeypox cases. The proposed approach uses images of human skin diseases obtained from an African hospital. The experimental results of the study demonstrate the proposed framework's efficacy, as it outperforms numerous examples of prior research on skin disease problems. On the other hand, statistical experiments with Wilcoxon and analysis of variance (ANOVA) tests are conducted to evaluate the proposed approach in terms of effectiveness and stability. The recorded results confirm the superiority of the proposed method when compared with other optimization algorithms and machine learning models.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links