Displaying all 9 publications

Abstract:
Sort:
  1. Yee PL, Mehmood S, Almogren A, Ali I, Anisi MH
    PeerJ Comput Sci, 2020;6:e326.
    PMID: 33816976 DOI: 10.7717/peerj-cs.326
    Opportunistic routing is an emerging routing technology that was proposed to overcome the drawback of unreliable transmission, especially in Wireless Sensor Networks (WSNs). Over the years, many forwarder methods were proposed to improve the performance in opportunistic routing. However, based on existing works, the findings have shown that there is still room for improvement in this domain, especially in the aspects of latency, network lifetime, and packet delivery ratio. In this work, a new relay node selection method was proposed. The proposed method used the minimum or maximum range and optimum energy level to select the best relay node to forward packets to improve the performance in opportunistic routing. OMNeT++ and MiXiM framework were used to simulate and evaluate the proposed method. The simulation settings were adopted based on the benchmark scheme. The evaluation results showed that our proposed method outperforms in the aspect of latency, network lifetime, and packet delivery ratio as compared to the benchmark scheme.
  2. Ali H, Kabir N, Shah MR, Muhammad A, Ali S, Mehmood S, et al.
    Toxicol Res (Camb), 2016 Nov 01;5(6):1688-1698.
    PMID: 30090468 DOI: 10.1039/c6tx00165c
    This study investigated the molecular mechanism(s) of the protective effects of a C-alkylated flavonoid, viscosine on an animal model of CCl4-induced hepatotoxicity. Viscosine at 20, 50 and 100 mg kg-1 was orally administered in a dose dependent manner per day for 3 days before the CCl4 (1 : 1 v/v in olive oil, 1 ml kg-1) treatment and 2 days after the treatment. Hepatoprotection was assessed in terms of reduction in serum enzyme activities (ALT, AST, and ALP) that occur after CCl4 injury, and by histopathology and immunohistochemistry. The rise in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in CCl4-intoxicated rats was markedly suppressed by viscosine in a concentration dependent manner. The decrease in the activity of hepatic antioxidant enzyme, SOD, was significantly prevented by viscosine, likewise gradually the levels of MDA and GSH were also normalized compared to silymarin. Viscosine also reduced the CCl4-induced damaged area from 2% to 0% as assessed by histopathology and prevented the mixed inflammatory infiltrate. Viscosine attenuated the inflammation in the liver around the injured central vein region by downregulating the CCl4 induced activation of hepatic CD68+ macrophages, thereby reducing their number as well. The expression of inducible nitric oxide synthase (iNOS) was more potentially suppressed by viscosine compared to the FDA approved positive control silymarin. The results of this study indicate that viscosine could be effective in protecting the liver from acute CCl4-induced injury. The hepatoprotective mechanisms of viscosine may be related to the free radical scavenging and attenuation of oxidative stress, as well as to the inhibition of inflammatory response in the liver. Here, we are proposing a novel mechanism of action of viscosine and suggesting that it may be a safe and better in vivo antioxidant.
  3. Mahmood H, Mehmood S, Shakeel A, Iqbal T, Kazmi MA, Khurram AR, et al.
    Polymers (Basel), 2021 Jan 26;13(3).
    PMID: 33530601 DOI: 10.3390/polym13030388
    Glycerol pretreatment is a promising method for the environmentally-friendly transformation of lignocellulosic materials into sustainable cellulose-rich raw materials (i.e., biopolymer) to fabricate biocomposites. Here, a comparison of aqueous acidified glycerol (AAG) pretreatment of wheat straw (WS) with alkaline, hot water, and dilute acid pretreatments on the thermal and mechanical characteristics of their fabricated composite board is presented. A comparison of total energy expenditure during WS pretreatment with AAG and other solutions was estimated and a comparative influence of AAG processing on lignocellulosic constituents and thermal stability of WS fiber was studied. Results imply that AAG pretreatment was superior in generating cellulose-rich fiber (CRF) as compared to other pretreatments and enhanced the cellulose contents by 90% compared to raw WS fiber. Flexural strength of acidic (40.50 MPa) and hot water treated WS composite (38.71 MPa) was higher compared to the value of 33.57 MPa for untreated composite, but AAG-treated composites exhibited lower values of flexural strength (22.22 MPa) compared to untreated composite samples. Conversely, AAG pretreatment consumed about 56% lesser energy for each kg of WS processed as compared to other pretreatments. These findings recognize that glycerol pretreatment could be a clean and new pretreatment strategy to convert agricultural waste into high-quality CRF as a sustainable raw material source for engineered biocomposite panels.
  4. Khan W, Khan I, Ullah H, Zain SNM, Panhwar WA, Mehmood SA, et al.
    Braz J Biol, 2021;82:e238665.
    PMID: 33787717 DOI: 10.1590/1519-6984.238665
    Malakand region is an endemic area for cutaneous leishmaniasis (CL). However, there are limited number of studies of this disease in Pakistan. Therefore, a study was conducted to understand the level of awareness attitude and practice among the residents of Makaland towards CL and the disease vectors. This study adopted a cross-sectional approach with a total of 400 respondents (n=93 rural and n= 307 urban). Overall, the population in Malakand region (61.2%) were well-informed in the role of sand fly in transmitting diseases, but most lack knowledge on the vector's behavior and almost a quarter (24.5%) were unable to provide knowledge on proper control measures. Alarmingly, the practice and attitudes of the general population was not satisfactory as close to half (49.8%) of the population did adopt any control method. This study calls for increase in awareness through health education campaign to reduce the risk of cutaneous leishmaniasis outbreaks in the future.
  5. Usman M, Ditta A, Ibrahim FH, Murtaza G, Rajpar MN, Mehmood S, et al.
    Plants (Basel), 2021 Sep 22;10(10).
    PMID: 34685784 DOI: 10.3390/plants10101974
    Lack of proper infrastructure and the poor economic conditions of rural communities make them dependent on herbal medicines. Thus, there is a need to obtain and conserve the historic and traditional knowledge about the medicinal importance of different plants found in different areas of the world. In this regard, a field study was conducted to document the medicinal importance of local plants commonly used by the inhabitants of very old historic villages in Southern Punjab, Pakistan. In total, 58 plant species were explored, which belonged to 28 taxonomic families, as informed by 200 experienced respondents in the study area. The vernacular name, voucher number, plant parts used, and medicinal values were also documented for each species. Among the documented species, Poaceae remained the most predominant family, followed by Solanaceae and Asteraceae. The local communities were dependent on medicinal plants for daily curing of several ailments, including asthma, common cold, sore throat, fever, cardiovascular diseases, and digestive disorders. Among the reported species, leaves and the whole plant remained the most commonly utilized plant parts, while extracts (38.8%) and pastes (23.9%) were the most popular modes of utilization. Based on the ICF value, the highest value was accounted for wound healing (0.87), followed by skincare, nails, hair, and teeth disorders (0.85). The highest RFC value was represented by Acacia nilotica and Triticum aestivum (0.95 each), followed by Azadirachta indica (0.91). The highest UV was represented by Conyza canadensis and Cuscuta reflexa (0.58 each), followed by Xanthium strumarium (0.37). As far as FL was concerned, the highest value was recorded in the case of Azadirachta indica (93.4%) for blood purification and Acacia nilotica (91.1%) for sexual disorders. In conclusion, the local inhabitants primarily focus on medicinal plants for the treatment of different diseases in the very old historic villages of Southern Punjab, Pakistan. Moreover, there were various plants in the study area that have great ethnobotanical potential to treat various diseases, as revealed through different indices.
  6. Bostan N, Ilyas N, Akhtar N, Mehmood S, Saman RU, Sayyed RZ, et al.
    Environ Res, 2023 Oct 01;234:116523.
    PMID: 37422115 DOI: 10.1016/j.envres.2023.116523
    Plastic is now considered part and parcel of daily life due to its extensive usage. Microplastic (MP) pollution is becoming a growing worry and has been ranked as the second most critical scientific problem in the realm of ecology and the environment. Microplastics are smaller in size than the plastic and are more harmful to biotic and as well as abiotic environments. The toxicity of microplastic depends upon its shape and size and increases with an increase in its adsorption capacity and their toxicity. The reason behind their harmful nature is their small size and their large surface area-to-volume ratio. Microplastic can get inside fruits, vegetables, seeds, roots, culms, and leaves. Hence microplastic enters into the food chain. There are different entry points for microplastic to enter into the food chain. Such sources can include polluted food, beverages, spices, plastic toys, and household (packing, cooking, etc.). The concentration of microplastic in terrestrial environments is increasing day by day. Microplastic causes the destruction of soil structure; destroys soil microbiota, cause depletion of nutrients in the soil, and their absorption by plants decreases plant growth. Apart from other environmental problems caused by microplastic, human health is also badly affected by microplastic pollution present in the terrestrial environment. The presence of microplastics in the human body has been confirmed. Microplastic enters into the body of humans in different possible ways. According to their way of entering the body, microplastics cause different diseases in humans. MPs also cause negative effects on the human endocrine system. At the ecosystem level, the impacts of microplastic are interconnected and can disrupt ecological processes. Although recently different papers have been published on several aspects of the microplastic present in the terrestrial environment but there is no complete overview that focus on the interrelationship of MPs in plants, and soil and their effect on higher animals like a human. This review provides a completely detailed overview of existing knowledge about sources, occurrences, transport, and effects of microplastic on the food chain and soil quality and their ecotoxicological effects on plants and humans.
  7. Haider MB, Saeed A, Ahmed A, Azeem M, Ismail H, Mehmood S, et al.
    Protein J, 2024 Sep 02.
    PMID: 39222239 DOI: 10.1007/s10930-024-10229-6
    A diminutive chemical library of acyl thiotriazinoindole (ATTI) based bioactive scaffolds was synthesized, instigated by taking the economical starting material Isatin, through a series of five steps. Isatin was first nitrated followed by the attachment of pentyl moiety via nucleophilic substitution reaction. The obtained compound was reacted with thiosemicarbazide to obtain thiosemicarbazone derivative, which was eventually cyclized using basic conditions in water as solvent. Finally, the reported series was obtained through reaction of nitrated thiotriazinoindole moiety with differently substituted phenacyl bromides. The synthesized compounds were characterized using NMR spectroscopy and elemental analysis. Finally, the synthesized motifs were scrutinized for their potential to impede urease, α-glucosidase, DPPH, and α-amylase. Compound 5 h with para cyano group manifested the most pivotal biological activity among all, displaying IC50 values of 29.7 ± 0.8, 20.5 ± 0.5 and 36.8 ± 3.9 µM against urease, α-glucosidase, and DPPH assay, respectively. Simultaneously, for α-amylase compound 5 g possessing a p-CH3 at phenyl ring unfolded as most active, with calculated IC50 values 90.3 ± 1.1 µM. The scaffolds were additionally gauged for their antifungal and antibacterial activity. Among the tested strains, 5d having bromo as substituent exhibited the most potent antibacterial activity, while it also demonstrated the highest potency against Aspergillus fumigatus. Other derivatives 5b, 5e, 5i, and 5j also exhibited dual inhibition against both antibacterial and antifungal strains. The interaction pattern of derivatives clearly displayed their SAR, and their docking scores were correlated with their IC50 values. In molecular docking studies, the importance of interactions like hydrogen bonding was further asserted. The electronic factors of various substituents engendered variety of interactions between the ligands and targets implying their importance in the structures of the synthesized heterocyclic scaffolds. To conclude, the synthesized compounds had satisfactory biological activity against various important targets. Further studies are therefore encouraged by attachment of different substitutions in the structure at various positions to enhance the activity of these compounds.
  8. Haq F, Farid A, Ullah N, Kiran M, Khan RU, Aziz T, et al.
    Environ Res, 2022 Dec;215(Pt 1):114241.
    PMID: 36100100 DOI: 10.1016/j.envres.2022.114241
    This study is based on the removal of methylene blue (MB) from aqueous solution by cost effective and biodegradable adsorbent carboxymethyl starch grafted polyvinyl pyrolidone (Car-St-g-PVP). The Car-St-g-PVP was synthesized by grafting vinyl pyrolidone onto carboxymethyl starch by free radical polymerization reaction. The structure and different properties of Car-St-g-PVP were determined by 1H NMR, FT-IR, XRD, TGA and SEM. A series of batch experiments were conducted for the removal of MB, The adsorption affecting factors such as temperature, contact time, initial concentration of MB dye, dose of Car-St-g-PVP and pH were studied in detail. The other parameters like the thermodynamic study, kinetics and isothermal models were fitted to the experimental data. The results showed that pseudo 2nd order kinetics and Langmuir's adsorption isotherms were best fitted to experimental data with regression coefficient R2 viz. 0.99 and 0.97. The kinetic study showed that the adsorption mechanism favored chemisorption. The Gibbs free energy (ΔG°) for the adsorption process was found to be -7.31 kJ/mol, -8.23 kJ/mol, -9.00 kJ/mol and -10.10 kJ/mol at 25 °C, 35 °C, 45 °C and 55 °C respectively. The negative values of ΔG° suggested the spontaneous nature of the adsorption process. Similarly, the positive values of entropy (ΔS°) and enthalpy (ΔH°) 91.27 J/k.mol and 19.90 kJ/mol showed the increasing randomness and endothermic nature of the adsorption process. The value of separation factor (RL) was found to be less than one (RL 
  9. Mehmood S, Ilyas N, Akhtar N, Chia WY, Shati AA, Alfaifi MY, et al.
    Environ Res, 2023 Jan 15;217:114784.
    PMID: 36395868 DOI: 10.1016/j.envres.2022.114784
    Vast amounts of plastic waste are causing serious environmental issues and urge to develop of new remediation methods. The aim of the study is to determine the role of inorganic (nitric acid), organic (starch addition), and biological (Pseudomonas aeruginosa) soil amendments on the degradation of Polyethylene (PE) and phytotoxic assessment for the growth of lettuce plant. The PE-degrading bacteria were isolated from the plastic-contaminated soil. The strain was identified as Pseudomonas aeruginosa (OP007126) and showed the highest degradation percentage for PE. PE was pre-treated with nitric acid as well as starch and incubated in the soil, whereas P. aeruginosa was also inoculated in PE-contaminated soils. Different combinations were also tested. FTIR analysis and weight reduction showed that though nitric acid was efficient in degradation, the combined application of starch and bacteria also showed effective degradation of PE. Phytotoxicity was assessed using morphological, physiological, and biochemical parameters of plant. Untreated PE significantly affected plants' physiology, resulting in a 45% reduction in leaf chlorophyll and a 40% reduction in relative water content. It also had adverse effects on the biochemical parameters of lettuce. Bacterial inoculation and starch treatment mitigated the harmful impact of stress and improved plants' growth as well as physiological and biochemical parameters; however, the nitric treatment proved phytotoxic. The observed results revealed that bacteria and starch could be effectively used for the degradation of pre-treated PE.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links