Gelatin hydrogel is widely employed in various fields, however, commercially available gelatin hydrogels are mostly derived from mammalian which has many disadvantages due to the supply and ethical issues. In this study, the properties of hydrogels from fish-derived collagen fabricated with varying Glutaraldehyde (GA) determined. The antidiabetic properties of salmon gelatin (SG) and tilapia gelatin (TG) was also evaluated against α-glucosidase. Glutaraldehyde-crosslinked salmon gelatin and tilapia gelatin were used, and compared with different concentrations of GA by 0.05 %, 0.1 %, and 0.15 %. Water absorbency, swelling, porosity, pore size and water retention of the hydrogels were dependent on the degree of crosslinking. The synthesis of hydrogels was confirmed by FTIR study. Scanning electron microscope (SEM) observation showed that all hydrogels have a porous structure with irregular shapes and heterogeneous morphology. Performance tests showed that gelatin-GA 0.05 % mixture had the best performance. Antidiabetic bioactivity in vitro and in silico tests showed that the active peptides of SG and TG showed a high binding affinity to α-glucosidase enzyme. In conclusion, SG and TG cross-linked GA 0.05 % have the potential as an antidiabetic agent and as a useful option over mammalian-derived gelatin.
One of potential inhibitors which is widely used for the clinical treatment of COVID-19 in comorbid patients is Angiostensin Converting Enzyme-1 (ACE1) inhibitor. A safer peptide-based ACE1 inhibitor derived from salmon skin collagen, that is considered as the by-product of the fish processing industry have been investigated in this study. The inhibitory activity against ACE1 was examined using in vitro and in silico methods. In vitro analysis includes the extraction of acid-soluble collagen, characterization using FTIR, Raman, UV-Vis, XRD, cytotoxicity assay, and determination of inhibition against ACE1. In silico method visualizes binding affinity, molecular interaction, and inhibition type of intact collagen and active peptides derived from collagen against ACE1 using molecular docking. The results of FTIR spectra detected amide functional groups (A, B, I, II, III) and imine proline/hydroxyproline, while the results of Raman displayed peak absorption of amide I, amide III, proline/hydroxyproline ring, phenylalanine, and protein backbone. Furthermore, UV-Vis spectra showed typical collagen absorption at 230 nm and based on XRD data, the chain types in the samples were α-helix. ACE1 inhibition activity was obtained in a concentration-dependent manner where the highest was 82.83% and 85.84% at concentrations of 1000, and 2000 µg/mL, respectively, and showed very low cytotoxicity at the concentration less than 1000 µg/mL. In silico study showed an interaction between ACE1 and collagen outside the active site with the affinity of - 213.89 kcal/mol. Furthermore, the active peptides of collagen displayed greater affinity compared to lisinopril, namely HF (His-Phe), WYT (Trp-Tyr-Thr), and WF (Trp-Phe) of - 11.52; - 10.22; - 9.58 kcal/mol, respectively. The salmon skin-derived collagen demonstrated ACE1 inhibition activity with a non-competitive inhibition mechanism. In contrast, the active peptides were predicted as potent competitive inhibitors against ACE1. This study indicated that valorization of fish by-product can lead to the production of a promising bioactive compound to treat COVID-19 patient with diabetic comorbid.
Physical activity has been associated with lower risks of breast and colorectal cancer in epidemiological studies; however, it is unknown if these associations are causal or confounded. In two-sample Mendelian randomisation analyses, using summary genetic data from the UK Biobank and GWA consortia, we found that a one standard deviation increment in average acceleration was associated with lower risks of breast cancer (odds ratio [OR]: 0.51, 95% confidence interval [CI]: 0.27 to 0.98, P-value = 0.04) and colorectal cancer (OR: 0.66, 95% CI: 0.48 to 0.90, P-value = 0.01). We found similar magnitude inverse associations for estrogen positive (ER+ve) breast cancer and for colon cancer. Our results support a potentially causal relationship between higher physical activity levels and lower risks of breast cancer and colorectal cancer. Based on these data, the promotion of physical activity is probably an effective strategy in the primary prevention of these commonly diagnosed cancers.
BACKGROUND: Bilirubin, a byproduct of hemoglobin breakdown and purported anti-oxidant, is thought to be cancer preventive. We conducted complementary serological and Mendelian randomization (MR) analyses to investigate whether alterations in circulating levels of bilirubin are associated with risk of colorectal cancer (CRC). We decided a priori to perform analyses separately in men and women based on suggestive evidence that associations may differ by sex.
METHODS: In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition (EPIC), pre-diagnostic unconjugated bilirubin (UCB, the main component of total bilirubin) concentrations were measured by high-performance liquid chromatography in plasma samples of 1386 CRC cases and their individually matched controls. Additionally, 115 single-nucleotide polymorphisms (SNPs) robustly associated (P