Displaying all 6 publications

Abstract:
Sort:
  1. Othman NH, Omar E, Mahmood MH, Madhavan M
    Malays J Pathol, 2005 Dec;27(2):91-8.
    PMID: 17191391
    Most previous studies on RET and p53 proteins have focused on thyroid papillary carcinoma. We investigated the role of RET and p53 protein expressions using immunohistochemistry on 52 cases of thyroid follicular adenomas and studied the follow-up records of these patients. The range of follow-up period was 3 to 14 years. The patients were between 15 and 71 years of age with a median age of 34.5 years. There were 46 females and 6 males. Except for 3 cases, all patients were Malays. The minimum volume of the tumour was 1000 mm3 and the maximum was 512,000 mm3 with a median of 270,000 mm3. Eleven (21.2%) cases showed RET expression. RET expression was not statistically significant when cross-tabulated against sex (p = 0.322), ethnicity (p = 0.518), age (p = 0.466) and symptom duration (p = 0.144). Six (11.5%) of 52 cases showed p53 immunopositivity. p53 expressions were also not significantly correlated to the clinical parameters above. There was no correlation between RET and p53 protein expressions. The only statistically significant finding was the association of tumour volume with duration of symptoms (p = 0.05). All patients are alive at the time of writing. 3 had recurrent goitre, 2 of these were diagnosed as colloid goitre while the third was a follicular lesion. One patient suffered from depression requiring anti-depressant treatment. In conclusion, unlike papillary carcinoma in which the roles of ret and p53 oncogenes are known, their roles in influencing the behaviour of follicular adenoma has not been ascertained.
  2. Kipli K, Hoque ME, Lim LT, Mahmood MH, Sahari SK, Sapawi R, et al.
    Comput Math Methods Med, 2018;2018:4019538.
    PMID: 30065780 DOI: 10.1155/2018/4019538
    Digital image processing is one of the most widely used computer vision technologies in biomedical engineering. In the present modern ophthalmological practice, biomarkers analysis through digital fundus image processing analysis greatly contributes to vision science. This further facilitates developments in medical imaging, enabling this robust technology to attain extensive scopes in biomedical engineering platform. Various diagnostic techniques are used to analyze retinal microvasculature image to enable geometric features measurements such as vessel tortuosity, branching angles, branching coefficient, vessel diameter, and fractal dimension. These extracted markers or characterized fundus digital image features provide insights and relates quantitative retinal vascular topography abnormalities to various pathologies such as diabetic retinopathy, macular degeneration, hypertensive retinopathy, transient ischemic attack, neovascular glaucoma, and cardiovascular diseases. Apart from that, this noninvasive research tool is automated, allowing it to be used in large-scale screening programs, and all are described in this present review paper. This paper will also review recent research on the image processing-based extraction techniques of the quantitative retinal microvascular feature. It mainly focuses on features associated with the early symptom of transient ischemic attack or sharp stroke.
  3. Makky EA, AlMatar M, Mahmood MH, Ting OW, Qi WZ
    Food Technol Biotechnol, 2021 Jun;59(2):127-136.
    PMID: 34316274 DOI: 10.17113/ftb.59.02.21.6658
    RESEARCH BACKGROUND: Antioxidants are important compounds present at low concentrations that inhibit oxidation processes. Due to the side effects of synthetic antioxidants, research interest has increased considerably towards finding natural sources of antioxidants that can replace the synthetic ones. The emergence and spread of antibiotic resistance require the development of new drugs or some potential sources of novel medicine. This work aims to extract the secondary metabolites of Saccharomyces cerevisiae using ethyl acetate as a solvent and to determine the antioxidant and antimicrobial activities of these extracted metabolites.

    EXPERIMENTAL APPROACH: The antioxidant activity of the secondary metabolites of S. cerevisiae were determined using DPPH, ABTS and FRAP assays. Furthermore, the antimicrobial potential of the ethyl acetate extract of S. cerevisiae against Cutibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis was assessed.

    RESULTS AND CONCLUSION: Five out of 13 of the extracted secondary metabolites were identified as antioxidants. The antioxidant activity of the S. cerevisiae extract exhibited relatively high IC50 of 455.26 and 294.51 μg/mL for DPPH and ABTS respectively, while the obtained FRAP value, expressed as ascorbic acid equivalents, was 44.40 μg/mL. Moreover, the extract had a significant antibacterial activity (p<0.05) against Staphylococcus aureus and Staphylococcus epidermidis at the concentrations of 100 and 200 mg/mL, respectively. However, no inhibitory effect was observed against Cutibacterium acnes as the extract was only effective against the bacterium at the concentrations of 300 and 400 mg/mL (inhibition zones ranging from 9.0±0.0 to 9.3±0.6) respectively (p<0.05). Staphylococcus aureus was highly sensitive to the extract, with a MIC value of 18.75 mg/mL.

    NOVELTY AND SCIENTIFIC CONTRIBUTION: This report confirmed the efficacy of the secondary metabolites of S. cerevisiae as a natural source of antioxidants and antimicrobials and suggested the possibility of employing them in drugs for the treatment of infectious diseases caused by the tested microorganisms.

  4. Salih AM, Ahmad MB, Ibrahim NA, Dahlan KZ, Tajau R, Mahmood MH, et al.
    Molecules, 2015;20(8):14191-211.
    PMID: 26248072 DOI: 10.3390/molecules200814191
    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
  5. Latip AAA, Kipli K, Kamaruddin AMNA, Sapawi R, Lias K, Jalil MA, et al.
    3D Print Med, 2024 Jul 19;10(1):23.
    PMID: 39028380 DOI: 10.1186/s41205-024-00231-0
    BACKGROUND: The revolutionary technology of smartphone-based retinal imaging has been consistently improving over the years. Smartphone-based retinal image acquisition devices are designed to be portable, easy to use, and cost-efficient, which enables eye care to be more widely accessible especially in geographically remote areas. This enables early disease detection for those who are in low- and middle- income population or just in general has very limited access to eye care. This study investigates the limitation of smartphone compatibility of existing smartphone-based retinal image acquisition devices. Additionally, this study aims to propose a universal adapter design that is usable with an existing smartphone-based retinal image acquisition device known as the PanOptic ophthalmoscope. This study also aims to simulate the reliability, validity, and performance overall of the developed prototype.

    METHODS: A literature review has been conducted that identifies the limitation of smartphone compatibility among existing smartphone-based retinal image acquisition devices. Designing and modeling of proposed adapter were performed using the software AutoCAD 3D. For the proposed performance evaluation, finite element analysis (FEA) in the software Autodesk Inventor and 5-point scale method were demonstrated.

    RESULTS: Published studies demonstrate that most of the existing smartphone-based retinal imaging devices have compatibility limited to specific older smartphone models. This highlights the benefit of a universal adapter in broadening the usability of existing smartphone-based retinal image acquisition devices. A functional universal adapter design has been developed that demonstrates its compatibility with a variety of smartphones regardless of the smartphone dimension or the position of the smartphone's camera lens. The proposed performance evaluation method generates an efficient stress analysis of the proposed adapter design. The end-user survey results show a positive overall performance of the developed universal adapter. However, a significant difference between the expert's views on the developed adapter and the quality of images is observed.

    CONCLUSION: The compatibility of existing smartphone-based retinal imaging devices is still mostly limited to specific smartphone models. Besides this, the concept of a universal and suitable adapter for retinal imaging using the PanOptic ophthalmoscope was presented and validated in this paper. This work provides a platform for future development of smartphone-based ophthalmoscope that is universal.

  6. Halim-Fikri H, Zulkipli NN, Alauddin H, Bento C, Lederer CW, Kountouris P, et al.
    Database (Oxford), 2024 Sep 04;2024.
    PMID: 39231257 DOI: 10.1093/database/baae080
    Thalassemia is one of the most prevalent monogenic disorders in low- and middle-income countries (LMICs). There are an estimated 270 million carriers of hemoglobinopathies (abnormal hemoglobins and/or thalassemia) worldwide, necessitating global methods and solutions for effective and optimal therapy. LMICs are disproportionately impacted by thalassemia, and due to disparities in genomics awareness and diagnostic resources, certain LMICs lag behind high-income countries (HICs). This spurred the establishment of the Global Globin Network (GGN) in 2015 at UNESCO, Paris, as a project-wide endeavor within the Human Variome Project (HVP). Primarily aimed at enhancing thalassemia clinical services, research, and genomic diagnostic capabilities with a focus on LMIC needs, GGN aims to foster data collection in a shared database by all affected nations, thus improving data sharing and thalassemia management. In this paper, we propose a minimum requirement for establishing a genomic database in thalassemia based on the HVP database guidelines. We suggest using an existing platform recommended by HVP, the Leiden Open Variation Database (LOVD) (https://www.lovd.nl/). Adoption of our proposed criteria will assist in improving or supplementing the existing databases, allowing for better-quality services for individuals with thalassemia. Database URL: https://www.lovd.nl/.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links