Displaying all 5 publications

Abstract:
Sort:
  1. Che Hussian CHA, Leong WY
    J Genet Eng Biotechnol, 2023 Mar 27;21(1):37.
    PMID: 36971917 DOI: 10.1186/s43141-023-00494-w
    Thermostable enzymes are enzymes that can withstand elevated temperatures as high as 50 °C without altering their structure or distinctive features. The potential of thermostable enzymes to increase the conversion rate at high temperature has been identified as a key factor in enhancing the efficiency of industrial operations. Performing procedures at higher temperatures with thermostable enzymes minimises the risk of microbial contamination, which is one of the most significant benefits. In addition, it helps reduce substrate viscosity, improve transfer speeds, and increase solubility during reaction operations. Thermostable enzymes offer enormous industrial potential as biocatalysts, especially cellulase and xylanase, which have garnered considerable amount of interest for biodegradation and biofuel applications. As the usage of enzymes becomes more common, a range of performance-enhancing applications are being explored. This article offers a bibliometric evaluation of thermostable enzymes. Scopus databases were searched for scientific articles. The findings indicated that thermostable enzymes are widely employed in biodegradation as well as in biofuel and biomass production. Japan, the United States, China, and India, as along with the institutions affiliated with these nations, stand out as the academically most productive in the field of thermostable enzymes. This study's analysis exposed a vast number of published papers that demonstrate the industrial potential of thermostable enzymes. These results highlight the significance of thermostable enzyme research for a variety of applications.
  2. Che Hussian CHA, Leong WY
    Prep Biochem Biotechnol, 2024 Feb;54(2):150-158.
    PMID: 37233514 DOI: 10.1080/10826068.2023.2217507
    Therapeutic proteins are recombinant proteins generated through recombinant DNA technology and have attracted a great deal of interest in numerous applications, including pharmaceutical, cosmetic, human and animal health, agriculture, food, and bioremediation. Producing therapeutic proteins on a large scale, mainly in the pharmaceutical industry, necessitates a cost-effective, straightforward, and adequate manufacturing process. In industry, a protein separation technique based mainly on protein characteristics and modes of chromatography will be applied to optimize the purification process. Typically, the downstream process of biopharmaceutical operations may involve multiple chromatography phases that require the use of large columns pre-packed with resins that must be inspected before use. Approximately 20% of the proteins are assumed to be lost at each purification stage during the production of biotherapeutic products. Hence, to produce a high quality product, particularly in the pharmaceutical industry, the correct approach and understanding of the factors influencing purity and yield during purification are necessary.
  3. Wong SC, Soon CF, Leong WY, Tee KS
    J Microencapsul, 2016 Mar;33(2):162-71.
    PMID: 26878098 DOI: 10.3109/02652048.2016.1142017
    Microbeads have wide applications in biomedical engineering field that include drug delivery, encapsulation of biomolecules, tissue padding and tissue regeneration. In this paper, we report a simple, yet efficient, flicking technique to produce microcapsules of calcium alginate at a narrow distribution of size. The system consists of an infusion pump and a customised flicker that taps the syringe needle for dispersing microcapsules of sodium alginate that polymerised in the calcium chloride solution. The flow rate of the syringe pump and the velocity of the flicker were studied to achieve a well controlled and tunable size distribution of microbeads ranging from 200 to 400 μm. At a flow rate of 4 μl/min and flicking rate of 80 rpm, a narrow size distribution of microbeads were produced. Via this technique, HaCaT cells were encapsulated in calcium alginate microbeads that grown into microtissues with a size ranging from 100 to 300 μm after two weeks of culture. These microtissues could be potentially useful for pharmacological application.
  4. Abd Rahman MR, Hassan Z, Hassan MS, Hashim R, Wong LS, Leong WY, et al.
    Int J Food Sci, 2023;2023:1797017.
    PMID: 37350796 DOI: 10.1155/2023/1797017
    Date pits are agricultural waste byproducts and are available in tons yearly. Milk MUFAs are lipids beneficial for health and sorted out for food product development. This work is aimed at researching the effect of supplementing dairy goats with date pit powder (DPP) as a source of fatty acids (FA), an alternative to enhancing the unsaturated FA in milk and analysed via chemometrics in a 3-month supplementation-based study. Saanen-Boer crossed dairy goats were divided into six groups comprising of control, 10 g and 20 g both for Ajwa DPP (high-quality dates) and Mariami DPP (agricultural waste byproduct), and another 30 g for Mariami DPP only. The supplementation exercise was done daily on each dairy goat. The DPP and milk samples were analysed for its FA profile applying GC-FID and followed by chemometric techniques, namely, PCA and PLS. Results indicated that the n-6/n-3 ratio was the highest for the unsupplemented group compared to the DPP-treated goats with lower n-6/n-3 ratios. The M30 group showcased the most promising health-related class of FAs viewed by 3D PCA and PLS model clustering patterns, in particular monounsaturated FA (MUFA) (C18:1n9c or oleic acid). These results suggest that Mariami DPP supplementation at higher doses and time to lactating Saanen-Boer cross goats can be a means to milk FA quantity and quality enhancement and that chemometrics via pattern recognition can be useful statistical tools when dealing with overwhelming data.
  5. Leong WY, Soon CF, Wong SC, Tee KS, Cheong SC, Gan SH, et al.
    Bioengineering (Basel), 2017 May 14;4(2).
    PMID: 28952522 DOI: 10.3390/bioengineering4020043
    Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line (ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 μL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 μm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links